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INTRODUCTION 

High School ma the ma ti cs teache rs have lo ng bee n aware that the ir stude nts 
sho uld know not o nl y so me thin g about th e development of pure mathematics 
but a lso something abo ut its applicat io ns. Several yea rs ago NASA , recog­

ni zi ng the appea l of ae rospace act iviti es , initiated and suppo rted the development 
of curri culum suppl e me nts for severa l high schoo l courses. B eca use a tt a inme nts in 
aerospace would not be poss ibl e without m a them atics , it was mos t a ppropri ate 
that a supplementary publication dealing with space acti vi ties be prepared for 
teachers of mathemati cs. 

The first ma th em a ti cs curri cu lum suppl e me nt , Space Mathematics, A Resource fo r 
Teachers , was published in 1972. One of th e most popular a nd oft-reques ted of th e 
suppl e m e nts , the book has been unava il ab le for evera l yea rs. This vo lume up­
dates the ea rlier work. We ho pe th at a new ge ne rat io n of studen ts will beco me 
more interested in mathe ma ti cs as th e result of see ing som e of its signi fica nt app li­
cat io ns in recent and curre nt space pro jects . Wo rking problems such as those in 
thi s book sho uld e nh a nce both the m ath e m atica l knowledge a nd skill s of students 
an d their app recia ti on a nd unde rsta nding of aerospace techn o logy a nd achieve­
ments. 

NASA 's Technical Mo nitor fo r thi s project was Muriel M. Thorne, Ed uca ti o na l 
Programs Officer , under the ge ne ra l direction of William D. Nixon, Chief of Edu­
cat io n Services , ASA. 

National Aeronautics and Space Admini tration 
Washington, D.C. 
Septem ber 1985 
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In 1972 , a co llecti o n of math emati cal pro blems related to space scie nce entitled 
Space Mathematics, A Resource fo r Teachers was published by th e E ducatio nal 
Progra ms Division of the National Aero na utics a nd Space Administra ti on 

(NASA). As an ea rl y user of that publi ca tio n , I ca n say th a t it has been both a 
pleasure a nd a cha ll enge for me to un de rtake the revisio n of th a t vo lum e of en­
richment mate ri a ls, especia ll y in the light of anothe r twe lve yea rs of activity in 
space exp lo ration. T his in terva l has been a period of much progress in both th e 
scie nce and th e technology associated with the space progra m , and it has offered a 
wea lth of new mater ia l in which to fin d app licatio ns of hi gh schoo l mat he ma tics. 

The basic fo rm at of the origin a l publi catio n has been re ta in ed , as we ll as ma ny of 
the classical pro bl ems and those which complemented the new mate ria l. In devel­
oping the exampl es and prob lems prese nted here, we have aimed a t preserving the 
authe nti city and signifi ca nce of the ori gin a l se tting while keepin g the level of math­
ematics within the seco ndary schoo l curriculum . The pro ble ms have been grouped 
into chapters acco rdin g to the predo min ant mathe matical topic. Within each chap­
ter we have atte mpted , as far as possible , to group proble ms involving similar 
th emes. There is a wide range of sop histi ca ti o n required to so lve th e various prob­
lems. Sin ce this is a resource book fo r teachers, we have assumed tha t the reader 
will be interested not o nl y in problems th a t ca n be bro ught directly into the cl ass ­
roo m , but a lso in those th at , a lth o ugh beyond the curre nt level of th e ir students , 
will increase the teacher's own awa re ness of some of the int e resting applications of 
mathemati cs in the space program . 

Perhaps th e mos t va lu ab le potential of a co llec ti o n such as this lies in its a bility to 
convey a sense of how seco ndary schoo l mathematics is actually used by practicing 
scientists a nd e ngi nee rs. Attitudes and approaches may ther eby be fostered , on 
th e part of teachers , th a t ca n he lp stude nts to be mo re insightful users of th e 
mathematics they lea rn . The present school mathemati cs curriculum , for example, 
gives no hint th at ma ny real-world problems do no t have a na lytic solutions in 
closed fo rm but may neverth e less be sa ti sfactoril y " so lved " by using carefully cho­
sen approx im atio ns or th e num eri ca l methods made poss ible by modern computers. 

In this con nect io n , we stress that in order to use num erica l a na lys is correctly or to 
ma ke good app roxi mat io ns , it is necessary to know so me thing of th e theore ti ca l 
background of the subj ect and to unders tand the co ncepts of precisio n a nd accu­
racy and the use of sign ifi cant digits . A lso, meth ods th at revea l mea ningful aspects 
of a procedure are preferab le to purely a lgor ithmic prescripti o ns ; the perhaps un­
fa mili a r "factor unit " method of unit conve rsio n prese nted in Chapte r 2 is ac tu a ll y 
quite com mon ly used in science a nd e ngineerin g. It no t o nl y re moves a ll unce r­
tainty abo ut whether to multipl y or divide by a co nvers io n factor but a lso is fa r 
mo re like ly to co ntri bute to an understanding of the underl ying concepts than , for 
examp le , the more usual metric system algor ithm expressed in te rms of " moving" 
the decimal point. 



Many NASA staff me mbers contrib uted time a nd thought to this project , including 
personnel at th e Goddard Space Flight Center , the Marshall Space Flight Center , 
the Jet Propulsio n Laboratory , the Langley Research Ce nter , and ASA H ead­
quarters in Washington , D .C. These people , too num erous to me nti o n individu­
all y, provided e nthusiast ic suppo rt , which is gra tefully acknowledged . 

Project Associa te James T. Fey , of th e U niversi ty of Maryland , and reviewers 
Louise Ro utl edge , Father Stan ley J. Bezuszka , Gary G . Bitte r , and Terry E. 
Parks , of the National Co uncil of Teachers of Mathe mat ics (NCTM) provided 
va lu abl e co mm e nts and suggesti o ns . 

O n the edito ri a l a nd support side , I would like to thank th e staff a t the NCTM 
Res to n office and Mu riel M. Thorne , Ed ucat ional Program Officer a t ASA 
H eadquarters . 

Bernice Kastner 
September 1985 
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Launch of the Space Shuttle Challenger on 
June 18, 1983. 
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Teache rs of math emati cs , like mos t adults in today 's world , ca n ha rdl y fai l to be 
awa re of the rapid deve lopme nt of space cience. We rea li ze th a t th e spec­
tacul a r achieveme nts of the space program have depended heavi ly o n m athe­

matics-math ematics th at is genera ll y compl ex , adva nced , a nd we ll beyond the 
level of mos t secondary schoo l curri cul a. Eve n th o ugh this p'e rce pti o n is va lid , 
the re a re many signifi cant aspects of space sci ence th a t ca n be und e rstood using 
o nl y high schoo l mathematics. 

The exp lorat io n of space na tura ll y uses the tools and techniques of astronomy. 
A strono my in turn is gai ning much new info rmatio n as a result o f se nding sci­
entific pro bes and sate llites beyond Earth 's atmosphere. Because astronomy has 
stimulated the growth of many of the co ncepts and methods of mathe matic , the 
high school teacher will find he re much th a t is fa mili ar. However , in some in­
stances the way mathematics is used to solve real-life problems is rat he r diffe re nt 
fro m me thods emph as ized in schoo l co urses. 

In this ope ning ch apte r , we shal l exa mine severa l rece nt achi eve me nts of th e 
Nation al Aero naut ics and Space Ad mini stra ti o n and ide nti fy mathe matica l id eas 
and questio ns that may be of inte rest to high school teachers and stude nts. Whe n 
appro pri a te , we will refe r to a proble m illustrat ing so me aspec t of the subj ect 
a nd wo rke d e lsewhere in the boo k. 

The Space Shuttle 
Th e Space Shuttl e (Fig . 1.1 ) is a tru e ae ro pace vehicle- it ta kes off like a rocke t , 
opera tes in orbit as a spacecraft , and land s like a n a irpl ane . To do thi s ta kes a 
compl ex co nfig uratio n of three ma in e le me nts: th e Orbiter , a de lta-winged 
spacecraft -a ircraft , about the length of a twin -j e t co mme rci a l a irlin e r but much 
bulkie r ; a dirigible-like ex te rna l tank , the o nly expendab le e le me nt , secured to the 
Orbite r's be ll y and co nta ining two milli o n liters of prope lla nt (C hapter 4 , Prob ­
lem 5) ; a pa ir of re usabl e so lid rocke t booste rs , each lo nge r and thicke r th a n a 
ra ilway tank car and att ached to the sides of th e ex te rn a l tank . 

Each Space Shutt le is mea nt to be just o ne e le me nt in a tota l tra nspo rta ti o n 
sys te m linkin g Earth wi th space. In add iti o n to prov iding fo r co nt in ued sc ie ntific 
invest iga ti o ns by transpo rtin g such syste ms as th e Spacela b a nd th e Large Space 
Telescope , rece ntly re named the Edw in P. Hub ble Space Te lescope, in to o rbit 
(Chapte r 3 , Proble m 4) , th e Space Shuttles a re a lso ex pected to ca rry th e bui ld­
ing blocks fo r la rge so la r-power space sta tions or huge ante nn a- bea rin g stru ctures 
for improved co mmunicatio n syste ms (Chapte r 4 , Proble ms 9 a nd 10). Structures 
th a t would be too frag ile to stand up und er th e ir own we ight on Ea rth will be 
folded up in the Shuttl e's ca rgo bay and assum e th e ir fina l shape in the mi cro ­
gravity enviro nme nt of space. The Shuttl e will a lso be ca pab le of ca rry ing a wor k 
force of seve n peopl e and re turnin g the m ho me afte r th e comp le ti o n of th e ir work. 



Mathematical Aspects of Some Recent ASA Missions 

One of the mo t bas ic mathemati cal problems ra ised by the la unching and control­
ling of a Shuttle or a ny o th e r spacecraft is th a t of describing its mo ti o n . Thi s 
proble m requires the ab ility to specify the positio n of the spacec raft ' ce nte r of 
mass a nd it s a ttitude (orientation) and to describe cha nges in both during flight. 
The specifi ca tion of position a nd attitud e ca n be acco mplished by se ttin g up suit­
ab le coordin a te sys te ms (Chap ter 7 , Prob le m 10). In strum ents to de te rmine a 
spacecraft 's a ttitude a re mos t effect ive ly refe renced to a spacecraft-based coo rdi­
na te sys te m , whereas g ro und co ntrol is best acco mpli she d in te rm s of an Earth ­
based sys te m . This dual-based sys te m necess it ates tra nsfo rm ati o ns be twee n 
coordinate syste ms (Chapter 7 , Prob lem 1, an d C hapter 8 , Pro ble m 2). 
D escribing a change of position a nd a ttitude requires an unde rsta ndin g of the 
meas ure me nt of tim e (Chapte r 2 , Problem 11). It is inte res ting to no te he re th a t 
o ur definition of a day on o ur rotating Earth must be redefined fo r a Space Shutt le 
Orbite r crew. For the m the Sun might rise aga in and aga in eve ry ho ur and a ha lf! 

The Planetary Probes 
The launch of the two Voyager spacecraft in the summe r of 1977 climaxed a se ri es 
of fruitful missions of planetary expl ora ti o n in cludin g the Mariner, Viking , a nd 
Pioneer se ri es of probe to Merc ury, Venus , M a rs , Jupite r , a nd Saturn. All these 
mi ss io ns se nt back new info rm at io n abo ut the structure and compositi on of th ese 
pl ane ts and their associa ted moons . We focus in thi s boo k o n so me of th e results 
of Voyager 1 and Voyager 2 . These probes , which benefited fro m more highl y 
developed instrume nt a tion and comp ute r capability th an their predecesso rs , 
approached closer to Jupite r (Chapter 7 , Proble m 11 ) a nd Sat urn th an prev io us 
flights did . Stunning pictures resu lted , showing the unanti cipated presence of 
active volcanoes on Jupite r 's moo n 10 (Chapte r 10 , Probl e m 6) a nd th e fin e 
structure of Saturn's rin gs. 

Among the mathe ma ti ca l prob le ms th a t arose in th ese miss ion s we re the 
follow ing. 

1. Transmitting spacec raft obse rva tio ns back to Ea rth (Chapte r 5, Prob le ms 2 
a nd 3, and C hapte r 8 , Pro bl e m 1). 

2. D e terminin g the tim e of transmission of spacecraft obse rva ti o ns (Chapter 3, 
Prob lem 5). 

3. Ca lcul ating the rota tio n pe rio d for planets such as Saturn , which is not so lid 
and has no o utsta ndin g obse rvab le features like Jupite r 's Great Red Spot (Chapter 
2 , Proble m 13) . 

11 
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Satellites 
NASA began its formal ex iste nce in 1958 and by the e nd of 1979 had succe sfully 
laun ched mo re than 300 large and small sa tellites wit h missio ns as diverse as 
observing Earth 's weathe r (Synchronous Meteorological Satellite [SMS] series) a nd 
resources (Landsat se ri es) , providing commun ication links for te levis ion signals 
(Applications Technology Satellite [ATS] series), and meas uring so lar radi a tion o ut­
side Earth 's a tmosphe re (Orbiting Solar Observatory [OSO] series). 

The design of these sa te llites and th eir expe rim e nts a nd the a nalys is of the d ata 
gathered invo lve a variety of math e matical questi o ns. We shall co nside r so me of 
the foll owing examples. 

1. Th e connection be twee n the conic secti o ns and the law of grav ita tion 
(See Appe ndix). 

2. Fo r e llipti c orbits, the co nnecti o n be twee n th e o rbit parame te rs and th e pe ri od 
of revo lutio n (Chapter 9 , Prob le m 11) a nd the determination of th e exact posi ­
tion of a sa te llite in its o rbit at a specified tim e (Chapter 9 , Prob le m 19 a nd 20). 

3. Th e geometry necessa ry to correct for di sto rti o ns a ri sin g when flat pi ctures 
a re made of a curved Eart h (Chapte r 7, Probl e ms 7 and 9, and Chapte r 10 , 
Proble m 2). 

4. The need for loga rithm s to unders tand how radiation is abso rbed by Eart h 's 
a tmosphere (Chapte r 6, Probl em 3) . 

5. T he mathe matica l analys is of the reflective properties of th e co nic sec ti o ns 
need ed to des ign an X-ray te lescope (Chapte r 9 , Prob le ms 21 a nd 22). 

6. The judicio us use of approximatio n (Chap te r 3 , Proble m 8; Chapte r 4 , 
Proble ms 6 and 8; Chapter 7, Probl e m 6 ; Chapte r 9 , Probl e m 22). 



CHAPTER TWO COMPUTATION AND 
MEASUREMENT 
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A photograph of the planet Jupiter made 
from images obtained by Voyager 1 on Feb­
ruary 5, 1979, showing the Great Red Spot 
and three of Jupiter's four largest satellites: 
10 (in front of Jupiter), Europa (brightly lit, to 
the right), and Callisto (barely visible at the 
bottom left). 
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Space sc ie nce i based o n a ma the ma t ica l descripti o n o f th e uni ve rse. Thi s 
math e ma ti ca l descripti o n is in turn based o n de finin g ph ys ica l qu a ntit ies 
clea rl y a nd preci e ly so th at a ll obse rve rs ca n ag ree o n a ny measure me nt of 

these qu a ntiti es. E ve ry meas ure me nt has two pa rt s: a num be r a nd a unit. In 
mathe ma tics , we te nd to foc us o n th e numbe rs a nd ass ume th a t the un its are ta ke n 
ca re of; but in scie nti fic wo rk , units rece ive ca reful a tt e nti o n thro ugh a proce­
dure kn own as dim e nsio nal ana lys is , whi ch is illu tra ted in th e first proble m . 

A mo ng the phys ica l qu a nti ties used to describe th e uni ve rse , so me a re co nside red 
fund a me nta l qua ntiti es wh e reas o th e rs a re de ri ve d qu a ntiti es , co mp a rab le to the 
des ignati o n of definiti o ns a nd undefined terms in a ma th e ma ti ca l sys tem . A lth o ug h 
it does no t rea lly matte r wh ich pa rti cul a r qua ntiti es a re the o nes des igna ted a 
fund a me nta l , the mos t co mm o n are le ngth , mass, a nd tim e. In scie nt ific wo rk t he 
two majo r sys te ms o f unit s fo r th ese qu a ntiti es a re th e mks ( me te r-kil og ra m­
seco nd ) a nd th e cgs (ce ntim e te r-gra m-seco nd). Eve ry measure me nt is a co mpa ri­
son with th e sta nd a rds th a t a re uni ve rsa ll y accepted as definiti o ns of these fun da­
me nta l units. In as tro no m y a nd space sc ie nce , whe re la rge di sta nces a re commo n , 
the me te r a nd eve n th e k il o me te r a re too sma ll to be co nve ni e nt ; in Prob le ms 5 , 
9 , a nd 10 of thi s chap te r , we sho w how mo re suit ab le units fo r le ngth a re defi ned. 

Dim e nsio na l a nal ys is (ma nipul a tio n of units acco rding to th e rul es o f a lgeb ra) is 
th e procedure used to e nsure co nsiste ncy in the definiti o n a nd use of un its. Fo r 
exa mpl e , sin ce fo rce is , by defin itio n , th e product of mass a nd acce lera ti o n , mea­
sured respecti ve ly in kg and m / s2 in the mks syste m , th e unit of fo rce in thi s 
sys te m must be e qui va le nt to kg . m/ sZ. A new te rm , th e neWlon, was crea ted to 
desc ri be th e unit of force : 1 new to n = 1 kg· m / 2. 

PROBLEM 1. Newton 's law o f grav it a ti o n , o ne of th e mos t impo rta nt id eas in space sc ie nce, sta te s 
th a t the fo rce of grav it a ti o na l a ttractio n be twee n two bodi es of masses M , a nd M 2 
is pro po rtio na l to the product of th e two masses a nd in ve rse ly p ro po rti o na l to th e 
squ a re of th e di st ance R sepa ra ting th e two mas es. If G is th e co nsta nt of pro ­
po rti o na lity, ca ll ed th e universal gravitational constant, thi s la w ca n be sta ted in 

GM ,M , . . 
sy mbo ls as F = R 2 - . Wh at must be th e unit fo r C In the mks sys te m ? 

Solution: Using dime n io na l a na lysis , we equ ate th e know n units in acco rda nce wit h t he 
re la tio nship a bove with o ut wo rrying a bo ut th e num bers, th e n so lve a lgebra ica ll y 
to ge t the unknown unit. Thi s gives 

newto n = (unit fo r G) (kg) (kg) (m r 2 

o r (unit fo r ~) = (newto n) (m)2( kgt 2 



Computation and Measurement 

PROBLEM 2. We know that in a circle of radius r, if a n a rc o f le ngth s subte nds a n a ngle 0 a nd 0 is 
meas ured in rad ia ns, the n s = rO. Show th at the radi a n is essenti a ll y dim e nsio n­
less ( i. e . , a n a ngle of 'IT / 4 radians is just the rea l numbe r 'IT / 4). 

Solution: Since r and s are bo th le ngths, in the mks syste m th ey will both be mea ured in 

meters. From s = rO we have 0 = ~ = m . Since the unit s cancel , 0 is ,. m 
dimensionless. 

Sci e nti fic theories a nd technological development both require accura te mea­
sure me nts . Since every meas ure me nt i a n approximation , a n importa nt as pect of 
scie ntific a nd technica l work is the a na lys is of experim e nta l e rro r and the co ntro l 
of the propagation of e rro r when co mputat io ns a re made usin g measured quan ­
tities. The use of co mpute rs to so lve co mpl ex problems by num e ri ca l me tho ds 
has made e rror a nalys is even mo re importa nt because co mpute rs approxi m a te real 
numbe rs usin g finite decimals. Moreover , co mpute rs re prese nt numbe rs inte r­
nally usin g a floating po int binary representation. Even th o ugh it is no t really 
necessary to und e rsta nd th e bina ry num e ration sys te m to work with co mpute rs , 
s uch knowledge is essenti a l to the analysis a nd control of e rro r propaga tion in 
co mputa tio na l work. The next problem co nside rs the floating po int binary rep re­
se nta ti o n of o ur familiar numbe rs. 

PROBLEM 3. The binary ( i.e . , base two) representation of a numbe r uses o nl y two digits, 0 a nd l. 
Whe reas in base te n th e actu a l value of a digit is th e prod uct of its no min a l value 
a nd th e a ppro pri ate power of 10 acco rdin g to th e position of the digit with re pect 
to the decimal point , in base two the va lue of a digit is th e pro du ct of its no m-
in a l value a nd the a ppropriate powe r of2. So, for exa mpl e , the binary numbe r 
10011 has the value th at we re prese nt in base ten as 1 x 24 + 0 X 23 + 0 X 22 + 
1 X 21 + 1 x 2°, o r 16 + 2 + 1 = 19 ; the binary number 10 .011 is the sa me as th e 
decim a l number 1 x 21 + 0 x 2° + 0 x r ' + 1 x r 2 + 1 x r 3, o r 2 + 0.25 + 
0.125 = 2 .375. 

a. D e te rmine the binary representations of the decim a l numbe rs 625 , 6.25 , a nd 
0.0625. 

Solution: 625 ca n be written as the sum 

so 625,en = 1001110001"vo' 

6.25 ca n be written as the sum 

4 + 2 + ! = 22 + 2 ' + 2- 2 
4 ' 

so 6.25,en = 110.01 ,wo' 

625 1 - J 

0.0625 = 10000 = 16 = 2 , 

so 0.0625 ,en = O.OOOl ,wo ' 

17 
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b. Show that it is imposs ible to represent the decim a l frac tion 0.2 exactly in a finite 
binary code. 

Solution: 0 .2 = 2110 = 1/ 5. To express this in binary no tatio n , we must write 1/ 5 as a sum of 
unit fract ions , each hav ing some power of 2 as de nominator . Since 1/ 23 is the 
la rges t such fract io n sma ller tha n 1/ 5 , we begin by finding the diffe re nce : 

1 1 8 - 5 3 
5 23 5 . 23 5 . 23 

Now the largest unit fraction less than 3/ (5 . 23
) with a power of 2 as de nomin a tor 

is 1/ 24, so we nex t find the diffe re nce: 

3 1 6 - 5 1 
5 . 23 - 24 = 5.24 = 5 . 24 

This means that 1/ 5 = 1/ 23 + 1/ 24 + (1 / 24) (1 / 5). Since the fraction 1/ 5 has re­
curred , multiplied by 1/ 24, we see that the first fo ur digits we h ave found to the 
right of the binary " decimal point ," 0.0011 , will repeat co ntinuo usly. In other 
words , 0.21en = O.OOl1 l wo ' (A qui cker but less in tuitive a pproach to finding thi s 
representation is to express 1/ 5 as the binary fractio n 1/ 101 a nd the n divide 101 
into 1, us ing binary ar ithm e tic. ) 

The reader can use the method of part (b) to show th a t the decimal fractions 0.1 , 
0.3 , 0.4 , 0.6 , 0.7 , 0.8 , 0.9 a lso have in finite ly repea ting bin a ry re presentations. 

c. A lmost a ll comp uters use a floating po int binary re presentati o n for numbe rs. 
In this sys tem , every number is expressed in the fo rm 0. d ld2 ... dn x 2m

, where 
d l = 1, d; = 0 o r 1 for i = 2 , 3 , . . . , n , and m is a n integer. For example , the 
floating point representations of the numbe rs in part (a) would be 

625 = 0.1001110001 x 210 

6.25 = 0.11001 x 23 

0.0625 = 0.1 x r 3 

Different co mpute rs have differing capab iliti es both with respect to th e le ngth (n) 
of the st ring of O's a nd 1 ' s th a t can be stored for a ny single numbe r and with 
respect to the exponent m that can be sto red. The limits ava ilab le for n and m 
determine the largest and sma llest number a computer can represent a nd a lso 
the size of the errors that mu st resu lt when a numbe r with an infinitely re peating 
representation mu st be stored wi th o nl y a finite str ing le ngth avai lab le. 

If a certa in co mputer can store on ly a n eight-digi t st rin g (n = 8), then the re pre­
senta ti o n fo r the decimal fraction 0 .2 will be stored as 0 .11001100 x r 2. What 
numbe r is this, and what is the difference between this number a nd 0 .2? 



Solution: 

Computat ion and Measurement 

32 + 16 + 2 + ] 51 
256 256 

51 1 51 
0.2 - 256 = 5 - 256 

256 - 255 1 
= --

5·256 1280 

We now state two definitions used in erro r ana lys is. The e definitions can be 
applied to both measurement errors and the errors th a t a ri se because of the way in 
which numbe rs are represented in co mputers . It is probab ly worth notin g in thi s 
context that the term measurement error as used here does not impl y th a t the 
measureme nt has been ca re less ly made but rath e r refers to th e fact that eve ry 
measu ring instrum ent is limited in accu racy and can never provide more th an an 
es timate of a true va lu e . 

Le t XT be the true value of a specifi ed quantity, a nd le t X be the va lu e of this 
qu antity as measured o r as represented in th e computer. Then: 

abso lute e rror in X = I XT - X I 

I . . X I XT - X I re a tlve erro r In = X
T 

Observe that abso lute e rro r has the sa me units as th e quantity und e r co nsid era­
tio n , whereas relative e rro r (us ua ll y reported as a perce nt) is dim e nsio nl ess . 

The re lative e rro r is considered to be the indi ca to r of how good a meas ureme nt 
or any o ther approx im at ion is. For exa mpl e , a meas ureme nt of 2.5 mm with a 

possible absol ute error of 0.05 mm has a relative error of °2°; , o r 2 perce nt , 

whereas a measurement of 1250 km , with a (much larger) possible abso lute e rror 

of 5 km has a much smaller relative erro r of 1i50 ' o r 0.4 pe rce nt. Awa re ness of 

the appropr iate to le rance for relative e rro r is a vital ingre di e nt of sc ie ntific work. 

------ ----
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PROBLEM 4. Wh at a re th e absolute and re la tive e rrors if a co mpute r that has a n e igh t-bi t bin a ry 
digit string represe nts 0 .2 as 0.11001100 x r 2? 

Solution: Fro m Pro ble m 3c , the abso lute e rro r is 1 / 1280 , o r abo ut 0.0008. T he re lative 
e rro r == 0 .0008/ 0.2 = 0.004, o r 0 .4 pe rcent. 

The use of signi fica nt fi gures is he lpful in e rro r a na lys is. T he numbe r of signi fi­
cant fi gures is defin ed as the numbe r of digits th a t ca n be ass um ed to be co rrect , 
sta rting a t the left with the first no nzero digit , and proceedi ng to the right. By 
this de finiti o n , 10.62 , 0.05713, and 4.600 a ll have fo ur sign ifi ca nt figures . A num­
be r such as 4300 is ambiguo us . This ambiguity may be reso lved by using scienti fic 
notati on , sin ce we may write the number as 4 .3 x 103, 4 .30 X 103

, o r 4 .300 X 103 

acco rding to whe th er the numbe r has two , three , o r fo ur signi fican t 
figures , respec tive ly. 

When approxim ate numbe rs a re added o r subtracted , it can be show n th a t the 
abso lute e rro r in the sum o r di ffe re nce could be as la rge as t he sum of the a bso­
lute e rro rs of the individual numbe rs . Whe n approxim ate numbe rs a re multiplied 
o r divided , it can be shown tha t th e re la tive e rro r of the resul t co uld be as la rge 
as the sum of the re la tive e rro rs of the in d ividua l numbe rs . This means th at fo r 
sums and diffe re nces of approxim ate numbe rs , the numbe r of decim al p laces 
considered significa nt can neve r be grea te r th an the nu mbe r of decim al places in 
the leas t precise adde nd . Fo r products and quo tie nts , t he number of signi ficant 
figures ca n never be more than the smalles t numbe r of significan t figures in the 
individua l facto rs. Wherever appropri ate , nume rical results will be given in 
acco rd ance with these guide lines. 

PROBLEM 5. Ea rth 's o rbit a round the Sun is e ll ipt ica l, but in ma ny cases it is suffici e ntl y accura te 
to approximate th e o rbit with a circle of radius eq ual to the mea n E a rth-S un dis­
tance of 1.49598 x 108 km . This di stance is ca lled the A stronomical Unit (AU). 
Listed in the chart tha t fo ll ows a re actu a l E arth-Sun di stances, give n to five sig­
nificant digits , o n the fir st day of each mo nth of a represe nta tive yea r. (The Ameri­
can Ephemeris li sts da ily di stances and the actua l times fo r these dista nces to 
seve n signi fica nt di gits .) 

Date Distance ( x 108 km) 

1 January 1.4710 
1 Feb ru ary 1. 4741 
1 M arch 1. 4823 
1 A pril 1. 4949 
1 May 1.5073 
1 June 1. 5169 
1 Jul y 1.5208 
1 A ugust 1. 5183 
1 Septembe r 1.5097 
1 Octo ber 1.4977 
1 ovembe r 1.4848 
1 Dece mbe r 1.4751 

3. To how many signi fica nt digits is it reaso nab le to approx im ate t he Ea rth-Sun 
distance as th o ugh th e o rbit we re circul a r? 
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Solution: To two significa nt digits , each of the distances in the ta ble can be give n as 
1.5 x 108 km. 

Solution: 

PROBLEM 6. 

Solution: 

b. What a re the largest po sibl e absolute and re lative erro rs in using the As tro­
no mica l U nit as th e Earth -S un distance in a co mputation instead of o ne of the 
distances from the tab le? 

(1.49598 - 1.4710) x lOB = 0.0240 X 108 km (sma ll est tab le va lu e) 

(1.49598 - 1.5208) x 108 = -0.0248 X 108 km ( largest table va lue) 

abso lute e rror s 0.0248 x 108 km 

I . < 0.0248 - 0 0166 1 7 re a tl ve error - 1.49598 - . , or. percent. 

T he procedure of dimensional analysis , described ea rli e r , is eas ily adap ted and 
co mm o nl y used in scie nce a nd techno logy fo r the task of unit co nvers io n . Reca ll 
that in dimensional ana lys is the units a re ma nipul ated in acco rda nce with the 
rules of a lgebra. 

Suppose we wish to cha nge a le ngth of 623 cm to me te rs. The ada pt a tio n of dime n­
sio na l a na lys is for unit coversio n invo lves multiplica tio n by a factor unit chosen 
according to the fo llowing simpl e principles: the factor unit is a fractio n with a 
va lu e of 1, whose num e ra tor is expressed in terms of the unit we wish to have a nd 
whose denominator is expressed in terms of the unit we wish to change. Since 
100 cm = 1 m , in order to cha nge 623 cm to m , we pe rfo rm the multiplica tio n 

623 cm 1 m 
--- x , " cance lin g" the cm in nume ra to r a nd denominator to get 

1 100 cm 

623 / 100 m, or 6.23 m. 

More co mplex co nve rsio ns ca n be do ne usin g multiplica tio n by severa l factor 
units a nd those readers wishing to conve rt between Briti sh a nd me tri c units ca n 
a lso use thi s me thod . For exa mple , the speed of light , 3.00 x 105 km / sec, ca n be 
fo und in miles per ho ur : 

3.00 X 105 
km 1 mil e 60 sec 60 min 671 108 '1 h - --- - x x -- x --- = . x ml es pe r o ur. 

1 sec 1.61 km 1 min 1 hou r 

The deep space probe Pioneer 10 took 21 mo nth s to get from Mars to Jupite r , a 
distance of 998 millio n kilometers . Use th e facto r unit technique to fi nd its ave r­
age speed in kilo mete rs per ho ur during th at pe ri od . 

distance 
ave rage speed = =~. :::.:..:..:::..:: 

time 

998 X 106 km x 12 mo nths x 1 day 
21 mo nths 365 days 24 ho urs 

= 6.5 X 104 km / h , o r abo ut 65000 km / h 
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PROBLEM 7. a. R eca ll th at the A stronomica l Un it (Eart h-Sun distance) di scu ed in Pro ble m 5 is 
1.496 X lOB km , to fou r significa nt fi gures . Find the Ea rth-Sun di sta nce in miles 
to three significa nt figures . 

Solution: 1 AU = 1.496 X lOB km 

1.496 x 10 km 
x 

1 
1 mil e 

1.61km 

= 9.29 X 107 mil es (a lmos t 93 milli o n mil es) 

h. Th e chart th a t follows gives th e mea n distance in kil o me te rs of each pl ane t in 
the so la r sys te m fro m the Sun. Express th ese di ta nces in AU , using a suit a bl e 
numbe r of significa nt dig its. 

Planet Distance ( km x lOB) 

Mercury 0.579 
Venus 1.08 
Mars 2.27 
Jupite r 7 .78 
Satu rn 14 .3 
Uran us 28 .7 
Neptune 45.0 
Pluto 59.1 

Solution: Since each di sta nce in the ta bl e has three sig ni fica nt d igits , a nd th e facto r unit 

1.4959
1
8 ~UI0B km has an exact numbe r in the num e ra to r a nd s ix s ignificant d igits 

in the de nomin a tor , the distances in AU can be give n to three ignificant digits. 
Multipl ying by the factor unit how n gives th e following di sta nces in AU: 

Me rcur y 
Ve nus 
Ma rs 
Jupite r 
Sa turn 
Uranus 

e ptun e 
Pluto 

0.387 
0.722 
1.52 
5.20 
9.56 

19 .2 
30.1 
39.5 

PROBLEM 8. The Solar Maximum Mission (S MM) sa te llite orb its Ea rth a t a he ight of 560 km. In 
many computations , the Earth-Sun di st a nce of 1.5 X lOB km is used to approx i­
mate the di sta nce of SMM from th e Sun. Wh a t is the max imum re la ti ve e rro r of 
thi s approxima tion? 

Solution: The distance of SMM fro m th e Sun is co nta ined within th e ra nge (Ea rth-Sun 
di stance ± (Ea rth di a mete r + 560 km)) , or (Ea rth-Sun di sta nce ± 6930 km ). 
From Probl e m 5 , if l.5 x lOB km is used as the Ea rth-Sun dista nce , the absol ute 
error ~2.48 x 106 km. 6930 km is mu ch sma ll e r th a n thi s e rro r , so th a t th e abso­
lute and relative e rro rs in curred in usin g 1.5 x lOB km as the SMM-Sun di sta nce 
a re the sam e as th ose of part (b) of Prob le m 5. If greate r accuracy is required , it 

~ 
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wi ll be necessa ry to use da ily Ephemeris valu es such as those in the li sting given in 
Prob lem 7. In this event , it is still true th at since 6930 km < 7 x 103 km , the 
re la tive e rror in approxim atin g the SMM-Sun di stance with th e Earth-Sun 

. 7 X 103 

d ista nce < 1.5 x 108 = 4.67 X 10- 5
, or abo ut 0.005 perce nt. 

T he Astronomical U nit (AU), although useful fo r measurin g distances within the 
so lar system , is too small to be co nve nie nt for di stances to sta rs. We shall the refore 
consider two othe r un its of length used by astrono mers. The first i called 
the light-year. 

PROBLEM 9. T he light-yea r is the d istance traveled by light during o ne Earth yea r. To three sig­
nificant digits , the speed of li ght is 3.00 x 105 km / s . Find the le ngth of the light ­
yea r in km a nd in AU. 

Solution: 1 Earth yea r = 365.25 days = 365.25 x 24 x 60 x 60 seco nds. In o ne yea r , light 
travels 3.00 X 105 x 365.25 x 24 x 60 x 60 km = 9.47 x 1012 km . To express this 

distance in AU , 1 light-year = 9.47 x 1012 km x 1.50 1xAl~ km = 6.31 x 104 AU. 

The parsec is the astro no mica l unit of dis tance th a t re la tes to o bserva tio nal mea­
surements. In order to define this uni t , we must co nsider the fact th a t when we 
observe the heaven , we have no direct perception of depth o r di stance. A useful 
model develo ped to portray the heavens is the celes tial sphe re. In thi s mode l, 
Earth is sur ro unded by an imagin ary sphe re with infinite radius. A coordin ate 
sys tem , si milar to la titude and lo ngitude , is imposed o n the celesti a l sphe re by 
p ro jec ting Ea rth 's ro tatio n ax is o n th e sphere to id entify th e celes ti a l no rth po le 
(CNP) and celes ti a l so uth po le (CSP) as shown in Fig. 2.1. Since the radius o f the 
celesti a l sphe re is in fi nite , a ll parallel lines po int to the sa me spo t o n the sphe re , 
a nd so every lin e para ll e l to Earth 's ro tation axis a lso po ints to the ce les ti a l no rth 
and so uth po les. 

T he extensio n of Earth 's equ atoria l pl ane inte rsects the ce lestia l sphere in a 
grea t circle ca lled th e celes ti a l equato r. Now a system of small circl es of declin­
ation (0) , comparable to la titude circles o n Earth, is im agined on th e celes ti a l 
sphe re , and a syste m of great circles ca lled right ascension (a) circl es , co mpa ra ble 
to lo ngitude , passing thro ugh the two po les , co mple tes the coo rdin a te sys te m 
(Fig. 2.2). 

Celestial nort h pole : 

8 = +90' 

Fig. 2.1 Fig. 2.2 

csP Celestial equator: 8 = 0' 
Vernal equinox 
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Every star o r ce lest ia l o bj ect ca n now have its po itio n ide ntifi ed by the o rde red 
pair (a, 0). Because Ea rth ro tates with respect to the celest ia l sphere, the time of 
observat io n must a lso be kn own in o rde r to use th e coord in a te sys te m . Diffe rences 
in the posi tions of two o bjects o n the ce les tial sphe re are exp ressed in terms of 
the a ngle subte nded at E arth by the a rc joining these points. 

A s Earth revo lves aro und th e Sun , very di s ta nt sta rs show no d isce rnibl e changes 
in positi on, but close r sta rs will show a ppa re nt moti o n with respec t to the ce les-
ti a l sphe re whe n viewed from diffe re nt po ints in Eart h 's orb it , as show n in Fi g. 2 .3 . 
This appare nt mot io n is ca ll ed parallactic motion, a nd th e cha nge in position is 
ca lled the parallax angle. In thi s contex t , 1 p a rsec is defined as the di sta nce at 
which th e radius of Earth ' o rbit subte nds a n a ngle measurin g 1 a rc-seco nd 
(see Fig . 2.4). 
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I 

"-e -­-- . -~ 
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i 
<0 

f---'---'----'-- L---+ 66°00 '00" 
12"00"'00' .0 

Fig. 2.3 

PROBLEM 10 . a. Find th e le ngth to three signi fica nt di git of 1 pa rsec in te rm s of AU , km , 
and li ght-years . 

Solution : If e is in radi a ns , we have a rc le ngth = re, where r is th e di sta nce exp ressed in the 
sa me units as th e a rc le ngth . In thi s case , arc le ngth = radiu s of Ea rth 's 
o rbit = 1 AU . 

1 1 degree 'IT radi a ns 
e = 1 seco nd = 3600 degree = 3600 x 180 degrees 

Sin ce we want three significa nt di git in o ur a nswe r , le t us use TI = 3.142 in 
thi s computation : 

e- 3. 142 d - 48510- 6 
- 3600 x 180 ra - . x 

(We have o mitted rad , since the radi a n is rea ll y dime nsio nl ess. (Probl e m 2, 
thi s C hapte r)) 
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T hen 

r = 
arc length 

() 

1 AU _ X 5 
4.85 X 10-6 - 2.06 10 AU. 

In te rms of km , r = 2.06 X 105 x 1.50 X 108 km = 3.09 x 1013 km . Since 1 Iight-
1 li ght-yea r 

year = 6.31 x 104 AU , 1 parsec = 2.06 x 105 AU x 63 04 U = 3 .26 li ght-
. 1 x 1 A 

yea rs. 

b. In ge ne ra l, if p is the parallax of a star and d its di stance fro m Ea rth , th en 

d ( in parsecs) = C 1 d f ). The parallax of o ur neares t sta r , a Ce nt auri , 
P In seco n so arc 

is 0.75 seco nds , and the pa rall ax of Sirius , o ne of the brightest stars in th e north­
e rn sky , is 0.38 seco nds. F ind the di stances to these stars in pa rsecs and in km. 

Solution: Fo r a Centauri , 

1 
d = 0 .75 parsecs = 1.3 parsecs 

= 1.3 x 3.09 x 1013 km 

= 4.1 x 1013 km . 

For Sirius, 

1 
d = 0.38 parsecs = 2.6 pa rsecs 

= 2.6 x 3.09 x 1013 km 

= 8.1 X 1013 km . 

T he accurate measureme nt of time has been o ne of th e mos t cha ll enging prob­
lems in hum an history. We now tend to take for gr anted th e civil time-keeping 
system in general use. T hi s sys te m has evolved over many centuri es and from 
time to t ime has been substanti a ll y revised. The origin a l definition of day , mo nth , 
and yea r depended , respect ive ly, o n observati o ns of the periodic mo ti ons of the 
Ea rth , Moo n , and Sun with respect to the celes ti a l background as observed from 
Earth . Since a ll th ese motio ns have fluctu at ions in th e ir periods , it is no t possible 
to define a co mpletely regu lar unit o n which to base an accurate time measureme nt 
in te rms of the day , mo nth , o r year . 

The fir t time-keeping instrum ent th at did no t depend o n celesti a l observa ti o n 
was the pendu lum clock . It did , however , depend o n the Earth 's grav ity, which 
vari es with geogra phi c loca ti o n and the positions of the Sun a nd Moon. The 

1 
seco nd , or igi na ll y defined as 24 x 60 x 60 of a day , mo re rece ntl y has been 

redefined in terms of th e mi crowave emissio ns of ce rta in ato ms (e.g. , quartz 
crys ta l ). T his new definiti o n provides a uniform standard wi th whi ch to measure 
intervals of tim e . 
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PROBLEM 11. a. One of the serio us problems of the o ld nonuniform time units was the accumu­
la tion of error. It might see m that an accuracy of 1 second a day (a possible re la -

tive error of 24 x 6
1
0 x 60' or about 1 x 10-5

) would be sufficient fo r most tech­

nica l or scienti fic purposes. Show that an error of 1 seco nd a day co uld result in 
an error of 1 .1 x 104 km in the position of the Earth in its o rbit after o nly 1 yea r. 
(Assume Earth 's orbit is ci rcular with a radius of 1.5 x 108 km.) 

Solution: In one year t he error cou ld be 365 seco nds. Earth moves through an angle of 

2'TT d" d 2'TT .. 365 
365 x 24 x 60 x 60 ra lans In one secon , or 24 x 60 x 60 rad ians In sec-

onds. The le ngth of arc that subtends this ang le in a circle of radius 1.5 x 108 km is 

s = r8 = 1.5 x 108 x 24 x ~~ x 60 = 1.1 X 104 km . 

b. The tropical year is defined as the time difference between successive ve rnal 
equi noxe -in other words , the time it takes Earth to complete one revo lution 
a ro und the Su n . This time does not have a simple relationship to Ea rth 's rotation 
period (the day). In fact , it turns out that to the nearest second one tropica l year is 
365 days , S hours , 48 minutes , 46 seconds. Show that the current sys te m of 
add ing an extra day to each ca lendar yea r that is a multiple of 4 but not a multipl e 
of 100 (leap years) serves to give each calendar year an integra l number of days 
and a lso keeps the seasons constant with respect to the ca lendar. 

Solution: If a ca lendar year has 365 days , the excess time in a tropica l year is 5 h 48 m 46 s , no t 
quite 1/ 4 day. Multiplying this excess by 4 , 4 x (5 h 48 m 46 s) = 23 h 15 m 4 s , 
a lmost 1 day. If we add 1 extra day each 4 years , we wi ll create a deficit of 
24 h - (23 h 15 m 4 s) = 44 m 56 s for each leap year. In each 100 years , there are 
25 yea rs that are multipl es of 4 ; however , after 24 leap years, the deficit will accu­
mul ate to 24 x (44 m 56 s) = 17 h 58 m 24 s , a lmost 3/ 4 day. This wi ll a lm os t 
balance the excess accum ul ation for the remainin g 4 years of the cent ury, so that 
yea rs that are multiples of 100 shou ld not be leap years. It is clear that furth er 
juggling will be necessary , since things never ba lance exact ly. 

c. For some computations in astronomy and space science , it is necessary to have 
an abso lute time that is a continuous count of the number of time units from 
some arbi trary reference. The universally accepted stan dard is the Julian D ay Cal­
end ar , a continuo us count of the number of days since 12:00 noon on 1 January 
4713 B .C. This curious starting date was actually chosen in A.D. 1582 by consid­
ering the cycle that is the least common multiple of the 28-year solar cycle (the 
interval required for all dates to recur on the same day of the week), the 19-year 
lunar cycle (the interval contai ning an integral number of lun ar months) , and the 
15-year indiction (the tax period introduced by the Roman emperor Constantine 
in A.D. 313). The year 4713 B.C. was the most recent date prior to 1582 when 
these cycles coincided , and it had the added advan tage of predating the ecclesiasti­
cally approved date of C reat ion , 4 October 4004 B.C. How long is the J uli an day 
cycle, and when is the next year when all three of the cycles used in its creation 
will coincide? 

Solution: The least common multiple of 28 , 19 , and 15 is their product , si nce these numbers 
have no prime factors in common. 28 x 19 x 15 = 7980 , so the next year th e 
cycles coincide will be (-4713) + 7980 , or A.D. 3267 . 
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d. A clever compute r a lgorithm fo r co nverting calendar dates to Julian days was 
developed usi ng FORTRAN integer arithmetic (H . F. Fliegel and T. C. Van 
Flandern , "A Machine Algorithm for Processing Calendar Dates," Communica­
tions of the ACM 11 [1968): 657). In FORTRAN integer arithmetic, multiplica­
tion and division are perfo rmed left to right in the order of occurrence, and the 
abso lute va lue of each result is truncated to the nex t lower integer value after 
each operat ion , so that both 2/ 12 and -2/ 12 become O. If 1 is th e year , J the nu­
meric order va lue of the month , and K the day of the mo nth , then the 
algorit hm is 

JD = K - 32075 + 1461 * (I + 4800 + (1-14) / 12) / 4 

+ 367 * (1-2-(1-14) / 12*12) / 12 - 3 * ((1 + 4900 + (J -14) / 12) / 100) / 4. 

The calendar date 25 D ecember 1981 is JD 2 444 964 . Use a hand calculator and 
this algo rithm to find the Juli an da tes of the la unch of Explorer 1 ( the first U.S. 
sate llite placed into orbi t), Greenwich Mean Time 1 February 1958 (Eastern 
Standard Time January 31 , 1958), and th e launch of the seventh Space Shuttle on 
18 June 1983 (ca rryi ng the first American fe male as tro naut , Sally Ride , into orbit). 

Solution: For 1 February 1958 , 1 = 1958 , J = 2, K = 1. 

JD = 1 - 32075 + 1461*(1958 + 4800 + (2-14) / 12) / 4 

+ 367*(2-2- (2-14) / 12*12) / 12 - 3*( (1958+ 4900+ (2-14) / 12) / 100) / 4 

= 1 - 32075 + 1461 *6757 / 4 + 367*(1* 12) / 12 - 3*(6857 / 100) / 4 

= 1 - 32075 + 2467994 + 367 - 51 = 2436236 

Fo r 18 June 1983 , 1 = 1983 , J = 6, K = 18. 

JD = 18 - 32075 + 1461 *(1983 + 4800+ (6-14) / 12) / 4 

+ 367*(6-2-(6-14) / 12*12) / 12 - 3*((1983+4900+(6-14) / 12) / 100/4 

= 18 - 32075 + 1461 *6783 / 4 + 367*4/ 12 - 3*68/ 4 

= 18 - 32075 + 2477 490 + 122 - 51 = 2445504. 

A large number of sa te llites require gro und process ing of spacecraft sensor data 
to determine the spacecraft a ttitude (i.e. , the spacecraft' s orientation). Examples 
of sensors used are Sun sensors , Earth senso rs , and star sensors. These sensors 
provide information , usua lly a measured angle , concerning the spacecraft pointing 
relative to a celes ti a l body (e .g. , Sun , Earth , o r sta r). 

Telemetry signals from these sensors a re converted o n the spacecraft to digital 
counts and transmitted to ground sta tio ns. The digita l co unt representation of a 
sensor output can be easily converted to meaningful measurements and units on 
the ground. However , telemetry signals are frequently subject to random inte r­
fe rence , o r " noise ." To understand th e meaning of no ise, one has only to tun e 
in to a weak chann el o n a television se t ; the " snow" th at is seen is a visual repre-
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sentation of noise present in an e lectronic signal. Noise consists of rando m sig­
na ls superimposed on va lid e lectronic signals fro m any e lectro nic device . A n 
in-depth understanding of the ca use , effect , and reduction of no ise is no t neces­
sa ry in the context of this problem. H owever , it shou ld be understood th at noise 
can suff iciently corrupt any e lectronic signa l to the ex tent th a t ma king use of, 
and prope rl y inte rpreting , the true signal can be di ff icult . 

T hi s pro ble m applies to spacec raft instrum e nts and senso rs. A number of methods 
have been developed to smooth da ta and re move the effects of no ise. In the nex t 
proble m , we exa mine o ne such me thod , ca lled the running ave rage. 

PROBLEM 12. G iven an o rdered set of num bers , Xi, j = 1, 2 , . .. M , a smoothed se t of num bers ca n 
be fo und by ave raging each numbe r with the n preceding and the n fo llowing 
numbe rs. Symbo lica lly, 

X ' = 1 
J 2n + 1 

j + n 

2: X i, 
j - n 

where n is typica ll y a small who le number (n :::; 5). 

For exa mp le , fo r the data in Table 2. 1, if n = 2 , the n 

1 
= 5 (11 + 14 + 18 + 19 + 16) = 15.6. 

a. Compute the smoothed va lues of th e da ta in Tab le 2 .1 fo r n = 1 and n = 2. 

Solution: We present a co mpute r program in BASIC , a lo ng with the run fo r th is tas k . 

Table 2.1 
Spacecraft Sensor Data 

Sample U nsmoothed Sa mple Unsmoothed 
No. (j) Value (Xi) No. (j) Va lue (Xi) 

1 2 11 20 
2 7 12 20 
3 10 13 18 
4 6 14 19 
5 11 15 20 
6 14 16 20 
7 18 17 17 
8 19 18 19 
9 16 19 18 

10 17 20 16 

J 
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OR:G!t~t'll PAGE J. 
OF POOR QUALIfY 

10 REM SMOOTHING FUNCTION 
20 REM ROUNDED TO 2 DECIMAL PLA 

CES 
100 'DATA 2,7tlO,6tlltl4t18tl9tl 

6,17,20,20,18,19,20,20, 17,19 
t18t16 

110M ~ 20 
lZ0 DIM X(M) : DIM VIM) : DIM Z ( M) 

130 FOR J ~ 1 TO M 
14 0 READ X (J) 
15 0 NEXT J 
160 FOR J ~ 2 TO 19 
170 Y(J) = (X( J - 1) + X (J ) + X( J 

+ 1» / 3 
180 Yl, = 10 * (Y(J ) + 0. 0 5 ) : Y( J ) = 

Y"I.. / 10 
190 NEXT J 
200 FOR J ~ 3 TO 18 
210 Z(J) ~ ( X( J - 2) + X( J - 1 ) + 

X(J) + X( J + 1 ) + X( J + Z» / 
5 

220 Z'X = 10 * ( Z ( J) + 0 . 0 5 ) :Z ( J ) 
ZX / 10 

230 NEXT J 
2110 PRINT "J";: HTA6 10: PRINT" 

X (J ) " ; 

245 HTA6 2 0 : PRINT " X' (J ) ,N=I " ;: 
HTA6 30 : PRINT " X' (J ) ,N= Z " 

Z50 PRINT "I"; : HTA6 10 : PRINT X 
(1 ) 

260 PRINT "Z"; : HTA6 10 : PRINT X 
(2); : HTA6 ZO: PRINT '(Z) 

270 FOR J = 3 TO 18 

280 PRINT J;: HTA6 10: PRINT X (J 
); : HTA6 ZO: PRINT Y (J ) ; 

285 HTA6 30 : PRINT Z(J) 
290 NEXT J 
300 PRINT " 19" ;: HTAB 10 : PRINT 

X ( 19);: HTA6 Z O: PRINT '( ( 19 ) 

310 PRINT "ZO"; : HTAB 10 : PRINT 
X(J) 

320 END 

lRUN 
J X (J) 

2 
Z 7 
3 10 
4 6 
5 11 
6 14 
7 18 
8 19 
9 16 
10 17 
11 ZO 
12 20 
13 18 
14 19 
15 20 
16 20 
17 17 
18 19 
19 18 
20 18 

X' (J ) ,N: 1 

6.3 
7.7 
9 
10.3 
Ill. 3 
17 
17.7 
17.3 
17.7 
19 
19.3 
19 
19 
19.7 
19 
18.7 
18 
17.7 

X'( J),N=2 

7.2 
9.6 
11.8 
13.6 
15.6 
16.8 
18 
18 . a 
18,2 
18.8 
19.a 
19.a 
18 .8 
19 
18.8 
18 

b. If the data points are plotted and joined by line segments, we get a graph 
demonstrating data fluctuations, Norma lly, what is of interest is the underlying 
smooth cu rve (hence the term smoothing) for this process, Compare the graphs of 
the unsmoothed data and the smoothed data for n = 2, 

Solution: Fig . 2 .5 shows the plot of the unsmoothed data (solid lin e) and the data smoo thed 
with n = 2 (broken line) . 

20 

18 

16 

14 

12 

10 

8 

6 

5 

Fig. 2.5 

Plo t of unsmoothed a nd smooth ed (n = 2) da ta from table I 

10 

Sample # (j) 

15 20 
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c. This smoothing technique cannot be used blindly. It is poss ible to disguise the 
true nature of the data by smoothing. Modify the program of part (a) to smooth 
the data in Table 2.2 and compare the graphs of the unsmoothed data and th e 
smoothed data for some va lu e of n , for instance , 5. How has the smoot hing tech­
nique disguised the true nature of the data? 

Solution: The following program incorporates a subroutine to smooth the data of Table 2.2 fo r 
va lues of n from 1 through 5 . T he graph of the unsmoothed da ta and the 
smoothed values for n = 5 are disp layed in Fig . 2 .6. We see th at the original data 
had a sinusoidal form , with the noise appea ring as so me slight departures from 
the smooth curve . The smoothed data are st ill sin uso id al, but the amplitude has 
been drast ically reduced. It is evident , if the program with th ese data is run , th at 
each increase in n reduces the amp li tude more than th e previous n. 

Table 2.2 

} Xi Xi j Xi 

20.5836 35 25.7612 69 12.4995 
2 24.4349 36 24.8147 70 10.5644 
3 28.8846 37 18. 7918 71 9.0069 
4 27.1585 38 14.7649 72 9 .1 803 
5 27.5732 39 10.7724 73 9 .1452 
6 24.4361 40 8 . 6446 74 14.1750 
7 21.2117 41 7 . 0319 75 17 .26 37 
8 14.6925 42 8 .6 086 76 21.4681 
9 12. 5582 43 11.4900 77 25.4627 

10 8'()11 7 44 15.3886 78 2 7 .09 09 
1 1 8.1619 45 18.4432 79 28.1451 
12 9.0843 46 20.62 17 80 25.6367 
13 10.1741 47 24.7681 81 24 .93 73 
14 15. 2122 48 27.5421 82 20.6476 
15 17.2274 49 28.1035 83 15.7963 
16 20.9153 50 27 . 3259 8 4 12.2591 
17 25.4725 51 23.4475 85 8 .2834 
18 26 .1 255 52 20.5059 86 9.484 0 
19 28.2650 53 16.3552 87 8.5730 
20 26.0446 54 10.8868 88 10 .2 0 66 
21 23.3059 55 10.0192 89 14.0093 
lJr:> 19.1884 56 8.2502 90 18 .71 70 .:.....:... 

23 15.7242 57 9 .5464 91 22.6785 
24 12.9586 58 9.1521 92 25.6463 
25 10.1285 59 13.9209 93 26.2984 
26 6.2595 60 18.6782 94 27.7386 
27 8.6186 61 23.24 1 4 95 27.3292 
28 9.5012 62 26.3716 96 23.7517 
29 15.3659 63 28.5849 97 19. 3016 
30 18.2059 64 28.9297 98 15.39 03 
31 22.4038 65 25.8980 99 12.9 370 
32 25.5969 66 22.4440 100 10.0038 
33 28.4748 67 21.3365 
34 29.2417 68 15.3698 

-- -
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O,i:GlfJt\ l Pl~GE .S 
OF POOR QUALITY 

10 REM SMOOTHING FUNCTION 2 
2 0 REM USING SUBRO UTINE 
100 DATA 2 0. 5. 2 4.4. 2 8. 9 . 27 . 2 . 27 

.6.2a.4.21.2.14.7,12.6.8. 0 
101 DATA 8.2.9.101 0 . 2.1 5. 2 017. 2 

,2 0 .9,25.5, 28 .1, 2 8. 3 , 26 . 0 
10 2 DATA 23.3.19. 2 .15.7.1 3 . 0 .1 0 

.1.8.3.8.8.9.5.15.4018 .2 
103 DATA 22 .4. 25.8. 2 8.5. 2 9. 2 . 2 5 

.8. 2 4.8.18.8.14.8 . 10 .8.8 . 8 
10 4 DATA 7 . 0 .8.8.11.5,1 5 .4.18 .4 

.2 0 .6 , 2a. 8 .2 7 .5. 2 8.1. 27 . 3 
10 5 DATA 23.4. 20 .5.18.4 , 10 . 9. 10 

. 0 ,8.3.9.5.9. 2. 13.9.18. 7 
108 DATA 23.2.28.4, 2 8.5. 28.9. 2 5 

.9 . 22 .a . 2 1.3 015. 4 .1 2 .4 01 0 .8 
107 DATA 9. 0 .9. 2 . 9 .101 4 . 2 01 7.3 . 

21.5. 25.5. 27.1. 2 8.1 .25.6 
10 8 DATA 2 4.9, 20 . 6 .1 5 .8.1 2 . 3. 8. 

3.9.5.8.8.1 0 . 2 .1 4 . 0. 18 .7 
109 DATA 22.7. 25 .8. 2 8 .3 . 27 . 7 . 27 

.3.23.8,19.3 . 15 . 4.1 2 .9.1 0 . 0 
11 0 M = 100 
120 DIM X( M) : DIM ,( M) : D IM Z(M ) 

13 0 FOR J = 1 TO M 

Counts 

36.000 

.. 

. ' 

.. . . 
• • 

o 

la o 
15 0 
180 
170 
180 
190 
1000 
10 10 

1020 
10 3 0 
10 40 
10 5 0 
1080 
1070 
1080 
10 9 0 
11 00 
111 0 

11 20 
113 0 
114 0 
1150 
1180 
1170 

READ X( J ) 
NE XT J 
F OR N = I TO 5 
GO SUB 1000 
NE XT N 
END 

REM SMO OTHING SUBRO UTINE 
PRINT " J " ." X ( J )" ;: HT AB 2 8: 
PRINT "X ' (J) .N= " ;N 
FOR I = 1 TO ( N + 1 ) 
PRINT I . X( I ) 
NE XT I 
FOR J = ( N + 1 ) TO ( M - N ) 

SUM = 0 
FOR I = (J - N ) TO ( J + N) 

SUM = SUM + X ( I ) 
NE XT I 

Y ( J ) = SUM / (2 * N + 1 ) 
n, = 100 * (Y( J ) + O. 00 5 ) : Y( 
J) = '1"1., / 100 

PRINT J. X( J ) . Y (J ) 
NE XT J 
FOR I = ( M - N + 1 ) TO M 
PRINT I .X( I ) 
NE XT I 
RETURN 

.' 

. . 

• 

Plot of smoothed ( . ) and unsmoothed ( ) data derived from Table 2. 

N - 5 for smooth ed da ta 

0.000 Sample Number 100.000 

Fig. 2.6 

We end this chapte r with a pro ble m th at show how a cl ass ica l mathematica l mode l 
is modified so th a t it can be used to de te rmine th e pe ri od of ro tation of a pl ane t. 
The modifica ti on uses so me of the principl es o f scie nti fic accuracy di scussed ea r­
li e r in this chapte r and illustra tes th e use of success ive ite rati o ns to refin e a co m­
puta tio n , eas il y done by co mputer. 

The procedure we develop has been used to de te rmin e th e ro tation peri od of 
Sa turn mo re accura te ly th an ea rli e r es timates by using o bserva ti o ns of va ri a tio ns 
in the pl ane t 's radio emissions made by Voyager 1. Since thi s pl ane t has ne ith e r a 
so lid surface no r any distin cti ve a tmosphe ric fea tures co mpa rabl e to Jupite r 's 
Grea t Red Spot , wha t is co mputed is th e pe ri od of ro ta ti ofl of the magne ti c fie ld of 
th e plane t. Beca use of th e co mpl ex nature of the radio e mi ss io n da ta , we illu s­
trate the meth od by co mputing the ro ta tio n pe riod of Jupite r ra the r th a n Sa turn. 
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We begin with a question th at is es e nti a ll y the sa me as th e fa miliar " H o w much 
time elapses betwee n successive a li gnments of the ha nds o f the clock ?" but th a t 
se ts th e st age for the actu a l pro blem we wi sh to so lve . 

PROBLEM 13. a. Jupite r ro ta tes o n it s ax is o nce eve ry 9 .92 ho urs, a nd its moo n 10 revolves a ro und 
Jupite r o nce every 42.5 ho urs. Wha t is the le ngth of tim e between co nsecutive 
passages of 10 over a pa rti cul a r spo t o n Jupite r? 

Solution: Le t RJ a nd RI be the a ngular ro ta ti o n a nd revo luti o n ra tes for Jupiter 
a nd 10 respectivel y. 

Then 
360 

RJ = 9 .92 = 36.3 degrees / ho ur 

a nd 
360 

RI = 42.5 = 8.47 degrees / ho ur. 

In Fig . 2 .7 , 10 moves from A to B while th e po int S o n Jupite r makes a comple te 
revo luti o n a nd th e n goes o n to S' to be unde r 10 aga in . So we must fi nd the time T 
such th a t RJT - 360 = RIT. Usin g th e values above for RJ a nd RJ, we ge t 
the fo llowin g: 

36.3 T - 360 = 8.47 T 

36.3 T - 8.47 T = 360 

(27 .8) T = 360 

360 
T = 27 .8 = 12.9 ho urs 

To see ho w thi s cl ass ic pro bl e m mi ght be a lte red , suppose we do n ' t kn ow Jupite r 's 
ro ta ti o n pe ri od (o r th at we do n' t kn ow it very accura te ly). As it a pproached 
Jupite r , the Voyager was ab le to ma ke observa ti o ns of th e times a t which Jupite r ' s 
Great R ed Spo t appeared in the ce nte r of the di sc as viewed from Voyager. We 
wa nt to use these observa ti o ns to de te rmin e Jupiter ' s ro ta tio n period. 

b. Voyager's tra jecto ry as it a pproached Jupiter is il lustra ted in Fig. 2 .8. Modify 
th e result s of p art (a) to find Jupite r ' s period if the R ed Spot i observed to be in 
th e cent e r a t tim e I I = 2 h 25 min ± 1 min , when Voyager 's di sta nce from Jupiter is 
D I = 7.70 X 105 km , and aga in a t tim e 12 = 16 h 24 min ± 1 min , when Voyager's 
di stance from Jupite r is D2 = 4 .72 X 105 km and Voyager has moved thro ug h a n 
a ngle Ct = 147.2° with respect to Jupite r 's center be tween th ese two obse rva ti o ns. 

Solution: If Voyager's tra jecto ry were circu lar and if Jupite r 's pe ri o d is P, the n the a na lys is of 
part (a) can be a pplied with RJ = 360/ P a nd RIT = Ct. We now have (360 / P)T -
360 = Ct , which transfo rm s into T = P + Ct P / 360. H oweve r , th e trajecto ry is not 
circ ul a r , so we must take into acco unt the di ffe re n t le ngths of ti me it takes fo r 
li ght to trave l from Jupite r to Voyager. Sin ce li ght trave ls a t a speed c (c = 3.00 X 

05 / ) d · . T D I - Do Ct P 1 km s , th e correcte equ a ti o n IS - C - = P + 360. 
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Fig. 2.7 

IR 

~ J upite r ro ta tio n 

I 
I 

R, 

For the da ta provided , we note th a t 

Fig. 2.8 

I ' 

ch Jupi ter ro ta tion 

I 
I 

D I - D2 = (7 .70 - 4.47) X l Os 
c 3.00 x l Os s 

== 1 second . 

Sin ce th e uncerta inty (possible e rror) is o ne minute in bo th tim e meas ureme nts , 
we see th at in thi s case th e re is no po int in ma king this correctio n. T he equ ati o n 

aP ( a ) T = P + 360 = P 1 + 360 may be so lved fo r P: 

Su bstitutin g the da ta , 

T P = --'--

1 + a 
360 

= ( 16 24 - 2 25) h 
60 60 

== (16 .40 - 2.42) h , or 13 .98 ho urs. 

1 ~= 1 + 147.2 
+ 360 360 

= l.409 , so 

P = 13.98 h 
1.409 

= 9.92 ho urs 
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c. Th e observa tio ns of the rad io e missio ns fro m Sa turn we re mu ch mo re e rra tic . 
A se ri es o f measure me nts f l' f z , . . . , f of the tim es of ce rt a in ch a racte ri stic pea k 
e mi ss io ns was reco rded , but it was no t know n how ma ny co mpl e te rota tio ns had 

""':!~~u.all Y occurred be twee n each co nsecuti ve pa ir (li- I, r;). The co rrection D I ~ D2 

is no t negligible in thi s case, a nd o the r correctio ns no t di scussed he re a lso a ppl y. 
Unde r these circumsta nces the equ a tio n re la ting T, P, a nd a beco mes imposs ibl e 
to so lve direc tl y. H oweve r , th e ite ra ti ve approach illustra te d nex t ca n be used , 
a nd by a ppl ying it to the case o f pa rt (b), we ca n show th a t the sa me so luti o n is 
o bta ined. We le t (2e = ( I + P. Since P is Jupite r's pe riod , f2e ca n be conside red a 
" corrected time" in the sense th at if Voyager's revolutio n pe riod a round Jupite r 
ma tched Jupite r 's ro tatio n pe ri o d , we wo uld have a = 0, P = T, a nd t 2e = f2. 

Subst ituting T = t2 - r" a nd P = (2e - ( I fo r the first te rm o n the ri ght in the equ a-
. aP aP 

tl o n T = P + 360' we ge t f2 - fl = (2e - tl + 360' 

So lving fo r l2e, we ge t (2e = f z - ;:0. Since thi s eq ua tio n still co nt a in s P, th e 

qu a ntity we a re see king, we begin by ma king a n initi a l guess (RI) a t it s va lu e; thi s 
is used toge the r with the known va lues of (2 a nd a to find a fir st es tim a te of f 2e , 

which we may ca ll f2e l · Nex t we le t?, = f2e l - fl a nd re pea t the eva lu a tion o f t 2e to 

ge t t 2e2; the n Pz = f 2e2 - ( I. T hi s process is re pea ted until the diffe re nce p., - Pn- I is 
less th a n 1 min ='= 0.02 h , the poss ibl e e rro r o f our tim e o bse rva tio n. This pro­
cedure is eas il y do ne by co mpute r (a nd in thi s case may eve n be do ne usin g a 
ha nd ca lcul a to r). Wr ite a compute r progra m to pe rfo rm thi s ite ra ti o n. 

Solution: We display a progra m writt e n in BASIC. 

lLl ST 

10 REM J UPITE R PER IO D I TER ATI ON 

20 REM ROU NDED TO 3 DECIMAL PLA 
CES 

11 0 T l = 2 . 1l 17 
120 T2 = 16 . 1l 
13 0 P (OI = TZ - TI 
135 PRINT "M" i: HTAB 6 : PRINT "T 

C(M)" , "P(M) 
IIl O FOR M = I TO 30 
150 TC( M) = T2 - l LJ7 . 2 * P(M - I) 

/ 360 
160 P(M) = TC(MI - Tl 
161l WZ. = 1000 * P(MI : X(M) = XX, / 

1000 
166 Y'X, = 1000 * TC( M) : Y( M) = Y'X, I 

1000 
170 PRINT Mi: HTAB 6 : PRINT Y( MI 

,x ( M I 
180 I F ABS (P (M) - P (M - 1 I) < 

. 0 17 THE N 200 
190 NE XT M 
200 

2 10 

PRINT "AFTER" iM i" ITERATION 
S , JUPITER'S PERIOD IS FOUND 

TO BE " i X(M) 
EN D 

l RUN 
M TC( M) P( M) 
1 10 . 6 82 8. 265 
2 13 . 02 10.603 
3 12 . 06LJ 9 . 61l7 
LJ 12 .LJ 55 10 . 038 
5 12 . 295 9 . 878 
6 12 . 36 9.9LJ 3 
7 12.33 LJ 9 . 9 17 
8 12,3 LJ5 9 . 92 8 
AFTE R 8 I TE RAT I ONS, JU PI TER ' S 
PE RIOD IS FO UND TO BE 9, 92 8 



CHAPTER THREE ALGEBRA 

J:' CEDlN PAGt: l K 1'10 

~C::; ) 3~ 

A;tist 's concept of Pioneer 10 leaving the 
solar system, June 13, 1983. 



Chapter Three 

38 

Itgebra is the language of qu antitati ve scie nce . A s such , it s me thods and tech­
niques ca n be fo und in mos t of th e examp les in thi s vo lume. The problems 
se lected fo r this chapte r a re those tha t do not also draw heav ily o n o the r 

ma the mati ca l a reas. Severa l use th e di stance , time , and ra te re la ti o nship , a nd 
o th e rs use direct and in ve rse varia ti o n . So me approx im a tio n techniqu es th a t a re 
freque ntl y used to so lve o the rwise intractab le prob lems a re a lso inc lud ed . 

Durin g 1982 , the pl ane ts Jupite r and Saturn we re in co njun ctio n , so th a t they 
appea red ve ry cl ose to each o th e r in the night sky. In the pro ble m th a t fo ll ows , we 
see how fr equently such a n event happe ns. 

PROBLEM 1. Th e plane ts Ea rth , Jupite r , Sa turn , and U ranu s revo lve a ro un d the Sun a pproxi­
mate ly o nce eve ry 1, 12 , 30, and 84 yea rs respec ti ve ly. 

a. H ow ofte n will Jupite r and Sa turn appear close to each o ther in th e ni ght sky 
as see n fro m Earth ? 

Solution: T he time required must be a multipl e of bo th 12 yea rs a nd 30 yea rs. This eve nt will 
recur a t in te rva ls of the leas t com mo n multipl e of 12 and 30, o r 60 yea rs. 

b. How ofte n will Jupite r , Sa turn , and U ra nus a ll appea r in the a me a rea in th e 
night sky as see n fro m Ea rth ? 

Solution : Now we need the leas t co mm o n multiple of 12 , 30 , a nd 84, whi ch is 420 yea rs. 

In additi o n to the e lectro magne ti c radi a ti o n th a t we kn ow as hea t a nd light , th e 
Sun co ntinu o usly se nd o ut cha rged pa rt icl es known a the so la r pl asma (see a lso 
C hapte r 10 , Prob lem 1). From tim e to time, th e re is a stro ng bur t of highl y e ne r­
ge ti c particl es ca lled a so la r fla re fro m a sma ll so urce in th e Sun 's atm osphe re. 

PROBLEM 2. Wh e n a so la r fl a re occurs o n the Sun , it ca n send o ut a blas t wave tha t trave l 
thro ugh inte rpl ane ta ry space a t a peed of 3 x 106 km / h . 

a. How lo ng wo uld it take for such a so la r fla re bl as t wave to ge t to Ea rth whe re 
it co uld be de tected by a sa te llite in o rbit ? (Reca ll f ro m the precedin g chapte r 
th at fo r a sa te ll ite close e no ugh to Earth , we can u e the Ea rth- Sun dist ance of 
1.5 x 108 km fo r th e ate llite- Sun d ista nce .) 

Solution: Sin ce di sta nce = peed x time , 

1.5 X 108 km = (3 x 106 km / h) ( time) . 

T h ' 1. 5 x 10
8 

h 05 10? h e n tIm e = 06 = . X -, 
3 x 1 

o r 50 h (about two days). 
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b. When such a so la r flare is detected , it is inte res ting to s tudy the source . Since 
the Sun is ro ta tin g, we must de te rmine how far the source has turn ed be twee n th e 
emiss io n and the detecti o n of a so lar fl a re . Beca use th e Sun is a de n e gas ra ther 
than a so lid body, it does no t have a unifo rm ro ta tion ra te; o n the ave rage the Sun 
makes one co mpl e te revo lutio n in 25.4 days . How many degrees would it rota te 
(on the ave rage) during the tim e the bla t wave trave led to the o rbiting sa te llite ? 

Solution: Since the Sun ro ta tes 3600 in 25.4 days , it ro ta tes ;;.~ a/ day , so 

th e so la r ro ta ti o n rate = 14.2 a/ day 

14. 20 1 day 
= -- x --~ 

day 24 ho ur 

= 0.59 a/ h . 

In 50 ho urs , th e Sun ro ta te 50 h x 0.59°/ h = 29.50. 

PROBLEM 3. A scientific capsule was carried a loft by a rocke t a nd re leased a t th e pea k of the 
rocke t 's trajectory. The rocket had an ave rage ve rtica l speed of 920 km an hour 
fro m liftoff to re lease of th e capsule . The capsul e made a controlled descent with 
an ave rage vertical speed of 390 km an hour and la nded 68 minutes after the 
rocket was launched. Fi nd the max imum he ight reached by the rocket. 

Solution: Let t be the time of asce nt in ho urs. Then ~~ - 1 is the time of de cent , a nd since the 

di stances of asce nt a nd desce nt a re equ a l, 

920 t = 390 (~~ - I) 
= 442 - 390 1 

13lOr = 442 

t = 0 .34 h . 

The maximum he ight = di stance of asce nt = (920 km / h) (0.34 h) = 310 km. 

Ita li an scie nti st Galileo Gali le i's introductio n of th e telescope for s tudyin g th e 
heavens brought abo ut a revolutionary cha nge in astro no my. It is ex pected th a t a 
co mparab le leap in o ur ab ility to exa mine th e unive rse will ta ke pl ace when th e 
Hubbl e Space Telescope is laun ched into orbit by the Space Shuttl e in 1986 . 
Beca use the space te lescope will be above Earth 's a tmosp here , it will be ab le to 
see mu ch fainter ob jects th an ca n now be see n by th e bes t Earth-based te lesco pe 
As we sha ll see in the nex t problem , thi s mea ns th a t as tro no me rs will soo n be 
ab le to make obse rvat io ns and to co mpa re the m with the cosmological theo ri es 
abo ut the age and formation of th e unive rse. 
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PROBLEM 4. a. The Space Te lescope will be able to see sta rs a nd ga laxi es whose bri ghtn ess is 

o nl y 5~ of the fa intes t o bj ects now obse rva bl e using gro und-based te lesco pes. The 

brightness of a po int so urce such as a sta r va ri es in ve rse ly as the squa re of it 
di sta nce from th e o bse rve r . How mu ch fa rth e r into the unive rse will th e space 
te lesco pe be a ble to see co mpa red to gro und-based te lesco pes? 

Solution: Le t dG be th e di sta nce fro m Earth of the fa intest ob ject vi sible to a gro und-based 
te lesco pe , a nd le t BG be the br ightness of thi s object . Le t d be th e di sta nce of a n 

obj ect o f bri ghtn ess ;0 BG · Since brightness va ri es in ve rse ly as th e squ a re of di s-

ta nce BG= :6 a nd 5
1
0 BG = : 1 . T hen;G =de= :~ , SOd1 =50d6 0rd =7 .1 dG. 

Th e Space Te le cope will see abo ut seve n tim es fa rth e r . 

b. Beca use of th e time it ta kes fo r li ght to trave l f ro m di sta nt sta rs a nd ga laxi es, 
we see the m as th ey we re so me tim e ago-the ph oto ns th a t reach us fro m a n object 
th at is 1 pa rsec away we re actu a ll y e mitted 3 .26 yea rs ago (see C ha pte r 2 , Prob­
le m 12). The best gro und-based te lesco pes ca n see objects a bo ut 109 pa rsecs fro m 
o ur so la r syste m. How lo ng ago we re the ph o to ns e mitted th a t we now see wh e n 
we o bse rve such a n object ? 

Solution: Since 109 pa r ecs = 3.26 x 109 li ght-yea rs, the photon were e mitted 3 .26 x 109 

yea rs ago. 

c. Wh e n the Space Te lesco pe begin s it s o bse rva tio ns , how fa r back in tim e will it 
see sta rs a nd ga lax ie ? 

Solution: Since it will see 7.1 tim es fa rthe r , it will see pho to ns th a t we re emitt e Ll 7. 1 x 
3 .26 x 109 = 2. 2 X 1010 yea rs ago. (If , as sugges ted by cosm o logica l th eo ry, th e 
age of th e unive rse is be tween 10 a nd 20 billi o n yea rs , the sp ace te lesco pe sho uld 
e na bl e us to see sta rs a nd ga laxi es in the ea rli es t stages of fo rm a ti o n .) 

Pioneer 10 was la un ched o n 3 M a rch 1972 . It o utli ved a nd o utpe rfo rm ed th e fo nd­
es t drea ms of it s crea tors. D es igned to las t a t least 21 mo nths, it has co ntinu ed 
we ll beyo nd the acco mpli shme nt of it s mi ss io n . On 25 April 1983, it s di sta nce fro m 
Ea rth equa led th at of Pluto , a nd th e fo llowing Jun e it crossed e ptune's o rbit 
a nd left th e so la r sys te m . (Alth o ugh Plu to is no rm a ll y th e o ute rm ost pl a net in the 
so la r sys te m , it ha a hi ghl y eccentri c o rbit a nd will be cl ose r to th e Sun th a n 

e ptune will be fo r the next seve ntee n yea rs.) To add to its reco rd of e ndura nce, 
mos t of Pioneer la 's in strume nts a re still wo rking, a nd Ea rth-based trackin g 
sta ti o ns we re still rece ivin g s igna ls bea ring info rm a tio n a bo ut the be hav io r o f th e 
Sun 's ex te nded a tm osph e re as of th is wr it in g. 
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PROBLEM 5. a. How lo ng did Pioneer 10 's radi o signa ls, traveling at th e speed of li ght 
(3 .00 x 105 km/ s) take to reach Earth from th e distance of Pluto in April 1983 
(4 .58 x 109 km )? 

Solution: distance tim e = ---
speed 

4.58 X 109 

3.00 X 105 S 

1.53 X 104 s 

1.53 X 104 

3600 h , o r 4.25 ho urs 

b. What was Pioneer 10 's ave rage speed , in km / h , if it tr ave led abo ut 
4.58 x 109 km between 3 Ma rch 1972 and 25 April 1983? 

Solution: From 3 M arch 1972 to 3 March 1983 th e re we re 11 yea rs, of which 2 were lea p 
yea rs, and fro m 3 March 1983 to 25 April th e re were another 53 days. The time 
for Pioneer 10 to travel th at distance was (365 x 11) + 2 + 53 = 4070 days, or 
4070 x 24 = 97680 hours. 

4 .58 X 109 
. 

Average speed = 9.77 x 104 km / h = 4. 69 x 104 km / h 

(We note th a t the ave rage speed over thi s peri od is less than the ave rage speed 
over th e 21 -month period of Proble m 6 in C hapte r 2.) 

The time required for an orbiting sa te llite to make one co mp le te revo lutio n of 
Earth is called its period. The length of the pe riod depends o n th e loca ti o n of the 
obse rver makin g the measure me nt. 

Suppo e th e observe r is loca ted fa r o ut in pace and views the a te llite aga in st 
the background of fixed sta rs. The pe riod measured in thi s mann e r is ca ll ed the 
sidereal period of revoluti o n , or the period in re lati o n to the sta rs. No te th a t th e 
rotation of Ea rth does not affect th e sid e real pe ri od . ow suppose th a t th e 
observe r is sta nding o n Ea rth 's eq uato r . A sa te llite is overhead in low Earth 
orbi t moving directly eastwa rd . When the sa te llite has made o ne complete tra nsit 
of its orbit , it will not ye t be ove rh ead for the observe r beca use th e ro ta tio n of 
E a rth will have car ri ed the o bse rve r a di sta nce eas tward . The sa tellite mu st trave l 
an add iti o na l distance to aga in be over the observer's head . The observer mea ­
sures th e period of the sa te llite a the tim e e lapsin g be twee n success ive passes 
directly overhead. This pe riod i ca ll ed th e synodic per iod of revo luti on, or th e 
period between successive co njunctio ns, and it ta kes into acco unt th e 
rota tion of Earth . 

Spacecraft usua lly o rbit in th e sa me eas te rl y direction as Earth 's rotation : thi s is 
ca ll ed a posigrade o rbit. All U.S. manned spacefli ghts have been la unch ed in po i­
grade orbits to take adva ntage of the ex tra ve locity g ive n to the spacec raft by 
Earth 's rotation. In this case, th e syno dic peri od is grea te r tha n th e siderea l pe riod . 

If the direction of o rb itin g is westerly , o r o pposite to Ea rth 's rotati o n , the o rbit is 
sa id to be retrograde. In thi case , an Ea rth observer would meet th e sate llite 
before it made o ne comple te revolution around Ea rth , and th e sy nodi c pe ri o d 
would be less th an th e side rea l pe ri od . 
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PROBLEM 6. In Chapte r 9, Pro bl em 7 , we show th a t the side rea l pe riod ( in seco nds) ca n be 
computed by th e fo rmu la P = 2-rr Va3 

/ C M , whe re a is the ave rage radius o f o rbit 
from the cente r of th e body abo ut which the sa tellite is in moti o n , C is th e co nstant 
of unive rsa l gravitat ion , and M is the mass of the body abo ut which the 
sa te llite orbits. 

a. Find the sidere a l pe riod of the High Energy A stronomy Observatory (H E AO) 
sa te llites , which have an ave rage a ltitude above Ea rth of 430 km . The radius of 
the E a rth ave rages 6370 km , and the va lue of the product CM fo r Ea rth is 
3 .99 x 1014 m3/ sec2

. 

Solution: Th e radius of o rbit is the sum o f the radiu s of E a rth and the ave rage a ltitud e 
of th e sa te ll ite: 

a = 6370 km + 430 km = 6. 80 X 106 m . 

T he n the ide rea l pe riod in seco nds is 

P = 2(3. 142) 
(6. 80 X 106) 3 

3.99 X 1014 

P = (6 .284) (6.80) V~:~~ x 102 = 5580 s 

T he ide rea l pe riod th en is 93.0 minutes , o r 1.55 ho urs . 

b. Compute the synodi c pe ri od of the H E AO sa te llites , give n th a t th e ir o rbits 
a re posig rade . 

Solution: In Fig. 3.1, le t x be th e pos iti o n of th e observe r (assumed on th e equ a to r) whe n th e 
sa te llite is d irectl y ove rh ead and le t y be th e obse rve r's pos it ion o ne synodi c 
pe ri od la te r , due to the ro ta ti o n o f Ea rth . 

0 - 0 
\ 
\ 

x 

Fig. 3.1 

y 
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If we can find the angul a r di sta nce A , we sha ll be abl e to use it to find the synodic 
pe ri od . In o ne synodic pe riod the o bserver trave led an angul a r di s tance A , and 
the sa te llite trave led an angul ar di ta nce 360° + A , measuring the angula r di stance 
in degrees . The o bse rve r trave ls 360° in 24 ho urs , o r 1° in 24/ 360 ho urs, so it 
takes th e observe r (24/ 360) (A) ho urs to trave l the angul ar di s ta nce A . From part 
(a) , th e s ide rea l pe ri od is 1.55 ho urs. It ta kes the sa te llite 1. 55 / 360 ho urs to 
trave l 1°, and th e time th a t e lapses be tween success ive viewin g over th e o bse rve r 

. (1.55) ( ) IS th e refore 360 360 + A ho urs. 

326~ A = ]3';5 (360 + A) 

24 A = (1.55)(360) + 1.55 A 

22 .45 A = 558 

A = 24.9 degrees 

So th e sy nodi c pe riod is (~'~g) (360 + 24.9) = 1.66 ho urs = 99.6 minutes . We 

o bserve th a t th e synodi c pe ri od is 6.6 minutes lo nge r th an the s ide rea l pe riod. 

PROBLEM 7. Th e sta te ment has been made th at ewto n's de ri va tio n o f his inve rse-squ a re law of 
grav ity f ro m Keple r 's third law is amo ng the mo t impo rtant ca lcul a ti o ns eve r 
pe rfo rm ed in th e hi sto ry of scie nce. Ke pl e r 's third law, based o n obse rvation 
ra th e r th an theo ry, ta tes th at th e squa res of the pe ri ods of a ny two pl ane ts are 
to each o the r as th e cubes of th e ir ave rage di sta nces from th e Sun. D e ri ve Newto n's 
law fro m Keple r 's law. 

Solution: If we re prese nt th e pe ri ods of any two pl ane ts by I and T and the ir di stances fro m the 
Sun by r and R, respective ly, then 

or 

Assumin g th a t we know the va lues of I a nd r, and substituting a co nstant C fo r 
2 

th e quantity ~ th e eq ua ti o n ca n be reduced to 
r 

Thus if we kn ow e ith e r T o r R fo r th e second pl ane t , we can so lve fo r th e unkn own 
qu a ntity. In thi s pro bl em , however , we wish to use thi s equ a ti o n to di scove r a 
new re la ti o nship , Newto n's law of grav ita ti o n . Fo r a bo dy moving in a circul a r 
pa th , the acce le rati o n towa rd th e cente r is 

v 2 

a =-. 
r 
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Substituting in F = ma, 

m v 2 

F = - . 
r 

The velocity of the body in th e circul a r o rbit i 

So 

F = mv
2 = m (27TR )2 

r R T 

Beca use T 2 = CR 3
, we find by substitu t io n in the previo us equ ati o n th a t 

K 
- R 2 · 

Th a t is, th e fo rce ho ld ing a pl a net in o rbi t fa ll s off as th e squ a re of th e di sta nce R 
to th e Sun . Newto n ex pressed th e va lue of K and obta in ed hi s law of unive rsa l 
grav ita ti o n: 

F = GMm 
? . ,.-

Thi s law appli es no t o nl y to th e a ttract io n be twee n a pl a ne t and the Sun but a lso 
to the a ttracti o n be tween any two bodies. G is th e co nstant o f uni ve rsa l grav it a­
ti o n , M and m a re the masses of the two bodies , a nd r i the di sta nce be twee n 
the ir cente rs of mass . 

In so lving the next prob lem , two specia l techni ques a re need ed. One is a fre ­
qu entl y used approxim a ti o n based on the fac t th a t (1 + x) (1 - x) = 1 - x 2. 

If x is small (fo r exampl e , uppose x = 0.01) , the n x 2 is ve ry much smalle r (fo r 
x = 0. 01 , x 2 

= 0. 0001) , and in thi case it is we ll within the limits of expe rim e nt a l 

e rro r to use (1 + x) (1 - x) = 1, o r 1 ~ x = 1 - x. The o the r is the substituti o n 

of a single va ri able fo r th e ratio of two o th e r va ri able names. 
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PROBLEM 8. From Kepler's third law, we see that th e far ther a plane t is loca ted from th e 
Sun , the longer its pe ri od is . Suppose Ea rth o rbits th e Sun in a circle of radiu 
r (r = 1.5 X 108 km ) with a per iod T (T = 1 year). Then any spacec raft SC (see 
Fig. 3.2) orbitin g the Sun in the same plane but a t so me grea ter dista nce (r + a) 
will have a period la rger th an T, and if it sta rts fro m a point on th e exte nsio n of th e 
Earth-Sun lin e (as shown), it will grad uall y lag fa rthe r and fa rth er behind. 

Spacecraft 
SC Earth Sun 

a 

Fig. 3.2 

However , the si tuation changes if a is sufficiently small , because the n the gravity of 
Earth , in th e configuration shown , adds appreciably to that of the Sun. For th e 
force holding the spacecraft in orbit to balance the combined pull of the Earth and 
Sun , the spacecraft must move a bit faster. In fact , there is a particular va lue for 
a so that the speeding up of the spacecnft is just sufficient to a llow it to keep up 
with Earth. If that happens, then the spacecraft orbits the Sun in a circle of 
radius (r + a) , but with period T like Earth . Wh at is the value of a that allows 
such an orbit? 

Solution: Let ms, me, msc be the masses of the Sun , Earth , and spacecraft , respective ly. For 
Earth 's motion , we have , as in the foregoing problem , 

F = G (msme) = m ev: = me (21Tr )2 
r2 r r T 

o r 

(1) 

For the motion of th e spacecraft , simila r analysis gives 

F = G (mscme + mscms ) = m sc v s2c = ~ (21T(r + a) )2 = msc(r ) (2 1T )2 
a2 (r + a)2 r + a r + a T + aT· 

. . Gms (21T )2 f (1) Canceling msc and substltutmg 7 = T rom : 

(me ms ) ( ) (Gms) 
G ~ + (r + a)2 = r + a -;'3 

and dividin g by G . ms: 

me 1 1 r + a 1 + (a / r) - - + = - - = ----::--..:.. 
ms a2 (r + a)2 r3 r2 
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me a 
Now let u = - and z = - . Notice that z is very small , s ince a is much less than r. 

ms r 
After these substitutio ns , 

If we divide each de no min ato r by r 2 and aga in use z 

.!:!:. + 1 1 
2 2 + Z. 

z (1 + z) 

a 
r 

A lthough thi s equation contains only u and z , it still has no simpl e so luti o n , so we 
now make two approximations in the seco nd term o n the left: 

1 ~ (1 - Z) 2 = 1 - 2z + Z 2 == 1 - 2z: 
(1 + z? 

u2 + (1 - 2z) = 1 + z, simpli fyi ng to u2 = 3z, or Z 3 = !!:.3 
z z 

me 
Now th e quantity u = - = 3 X 10-6, so Z 3 = 10-6, o r z = 10-2 

ms 

Since z = ~ a = r X 10-2 = 1.5 X 106 km. 
r ' 

The position we have found in this problem is an equi librium point of the Sun­
Earth sys te m . A si mil a r analysis can be used to show the existence of ano ther 
equilibrium point o n the sunward side of Earth , a nd in fact there a re five such 
equilibrium points in a ll fo r any two-body gravitatio na l system . T he e are ca ll ed 
Lagrangian po ints in ho nor of the mathe mat ician who first proposed their exis t­
e nce (Fig. 3 .3) . It has been suggested that two of the Lagrangian points of the 
Earth-Moon system sho uld be co nsidered as possible locat io ns fo r fut ure 
space co lo ni es. 

Sun 
--Center o f mass of 

Sun-Ea rth system 

pa th of Earth's o rb it 
, I 

" / ~---------+--------~L, 
L4

" L2 // 
'- /' 

Ea rth""""/ L, 

Fig. 3.3 

- - - ----------

The fi ve Lagrangian po in ts 
L" L" L" L,. L, 

_I 
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The ISEE-3 satellite (third International Sun-Earth Explorer), a joint venture of 
NASA and the E uropean Space Agency, was launched in August 1978 and 
placed in a "halo orbit" around the Lagrangian equilibrium point between Earth 
and the Sun. In this orbit , it mo nitored the Sun 's e missions that approach 
Ea rth-witho ut the interference that would result if the sate llite were actu a lly a t 
the eq uilibrium point where its radio antenn a would have to point directly a t the 
Sun. After this mission was successful ly comple ted in 1982, ISEE-3 's o rbit a nd 
direction were changed to conduct a n explo ratory survey of Earth 's magneto­
tail. In December 1983 , the sate llite was redirected towa rd the co met Giacobini­
Zinner a nd renamed International Cometary Explorer (ICE) in keeping with its 
new mi ss io n. It reached this comet in September 1985 . 

PROBLEM 9. a. If M is the mass of Eart h , t hen the mass of the Moon is 0.012M. The radii of Earth 
and the Moon are 6370 and 1740 km , respective ly. Use these facts with Newto n's 
law of universal gravitat io n to find the ratio of surface grav ity on the Moo n to 
surface gravity on Earth. 

Solution: If we place a mass m at the surface of Earth , the n the grav ita tio na l a ttract io n 
between the mass a nd Eart h is 

GMm 
Fe = (6370)2' 

Si milarly , the attraction betwee n the Moon a nd an eq ual mass m pl aced o n its 
surface is 

T he ratio of F,,, to F" is 

G(0.012M)m 
F,,, = (1740r 

F", 
Fe 

0.012 (6370)2 
...,----:-::: x ~-~ 

(1740)2 1 

4.87 ~ 105 

3.03 X 106 

That is , gravity at the surface of the Moon is i as grea t as gravi ty at th e surface of 

Earth. 

b. If a man weighs 180 pounds on Earth , what wo uld he weigh o n the Moo n? 

Solution: Weight on the Moon would be as follows: 

~ x 180lb = 30lb 
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PROBLEM 10. In o rn e future space sta ti ons it is ex pected th at a rtifi cia l g ravi ty wi ll be created by 
ro tatio n of a ll o r pa rt of the sta ti o n . Gas je ts o r o the r propul sio n dev ices ca n be 
used to co ntro l the rate of ro tat io n of the stat io n . As with th e centrifuge , the 
ro ta ti o n will p roduce a force aga inst th e' astro na ut th at ca nno t be distinguished 
from gravi ty. If r is th e d istanc.e of a point in the sta ti o n fro m th e ce nter of rota­
tion , then the ve locity of the point fo r N rotations a seco nd is 

Solution: 

v = 2-rrrN. 

As no ted in Prob lem 7, 

v2 

a = r ' o r v = Var . 

Setting the two velocities eq ua l , 

2-rrrN = va; 

N = .l a 
2-rr r 

If r is give n in me te rs , th e n a is th e acce lera ti o n in me ters per seco nd per second. 
By co ntro lling th e va lues of rand N , any desired artifi cia l g rav ity ca n be produced. 

a. Compute th e ro tational ra te needed if the rad ius of the sta tio n is 30 m a nd a 
grav ity eq ua l to o ne- ha lf the gravi ty of E arth is desired. (Use g = 980 cm per 
seco nd per eco nd , o r 9.8 m per seco nd pe r second .) 

a = ~ (9.8 m / s2) = 4.7 

N=~ !Z7 
2-rr 'J3fJ 

= 0.063 

The ra te of ro ta ti o n must be 0.063 rotation per second or 60 x 0.063 = 3.8 rota­
tions per minute. 
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b. Compute th e needed ro tationa l ra te if the radius of the sta ti o n is 150 m a nd 
Ea rth surface grav ity is des ired . 

N = _1 9.8 
21T 150 

21T 

= 0.04 

T he ra te of ro ta ti o n must be 0 .04 ro ta tio n per seco nd o r 2.4 ro ta ti o ns pe r minute. 

PROBLEM 11. a. Th e fo rce of grav ita ti o n with which o ne bo dy attracts a no the r is in ve rse ly pro po r­
tio na l to the squ a re of th e d ista nce be tween the m . Co nseque ntl y, th e pull of the 
Moo n o n the ocea ns is grea te r o n o ne side of Earth tha n o n the o th e r. Thi s grav ita­
ti o na l imba la nce produces tides. Th e Sun affects th e tides s imil a rl y. Beca use th e 
Sun exerts a n e no rmo usly grea ter pull o n Ea rth tha n the Moon does, o ne might 
think th at th e Sun wo uld influe nce the tides mo re th a n the M oon. Ju st th e oppo­
site is t rue. H ow ca n t hi s be ? 

Solution: Le t N be th e po int on Earth neares t th e Moon a nd le t F be th e po int o n Ea rth 
fa rthest from the Moon . We sha ll ass um e th a t th e tide -ra ising fo rce of th e Moo n 
is in so me se nse mea ured by the di ffe re nce in th e pull of th e Moon o n unit masses 
loca ted at a nd F (see Fig. 3.4) . If r is the di sta nce fro m th e ce nter of th e Moon 
to N a nd if Dc is th e di a me te r o f Ea rth , th e n th e fo rces ac ting a t N a nd F a re , 

re pective ly, ~1:! a nd (r ~~c)2' M be ing the m ass of th e Moo n a nd G th e uni ­

versa l grav ita ti o na l consta nt. T he di ffe re nce be tween th ese two fo rces is the ti de­
ra ising fo rce , which we sh all ca ll F;. T he n , 

F; = GM (!z - (r +1 Dcr ) 

2GMD c (1 + If, ) 
r 3 (1 + ~e r 

Beca use ~e i ve ry sma ll , thi s ex press io n is a pprox im ate ly 

F. _ 2GMDe 
t - ,.3 

Earth 

M oon 

o NOF 
I I 
I I 

•• ------------------------~.~I De ~ 

Fig. 3.4 
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Thus we wo uld expect the tida l e ffect to be in ve rse ly proporti o na l to the cube of 
the distance , whe reas grav ity is inve rse ly pro po rti o nal to the squ are of the dis­
tance. Beca use the distance fro m Ea rth to the Sun is e no rmo usly grea te r tha n th e 
dista nce to the Moon , it is not surprisin g tha t the Moo n provides the do mina nt 
tide-ra isin g fo rce. Loca l horizo nta l co mpo ne nts of this fo rce ca use th e ti des to ro ll 
in and ro ll o ut ( i.e. , the ho ri zo nta l move ment of the wa te r). 

b. Fro m the fo rego in g , we ca n co mpa re t he tide-ra ising fo rces of the Moon and 
th e Sun . If we use the subscript m fo r va ri ab les th at appl y to th e Moo n and s fo r 
th ose th at appl y to th e Sun , th e ra tio 

F.m = 2CMmDe/ r~ _ Mm r: 
F.s 2CMsDclr: - Msr~ . 

Th e mass and di stance of the Moo n and Sun a re as fo llows : 

F.m 
Compute T.' 

( s 

So th e ti da l fo rce exe rted by the Moo n is more tha n do uble th a t exe rted by th e Sun 
o n the Ea rth. 

-- - ----
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Geo metry is fund a me nta l to space sc ie nce. A multitude of activiti es , from th e 
predi cti o n of fli ght pa ths to the design of eq uipm e nt , m a ke use of geo-
me tri c a na lys is . Geometry e nte rs into ma ny of the problems of th e precedin g 

a nd subseque nt chapte r . Mos t of th e proble ms in th is chapter fa ll into three 
categories: those in vo lvi ng a reas a nd vo lum es of pl a ne a nd so lid figures , th o e th a t 
use simil a rity, a nd tho e that use prope rti es of circles or pheres . The Sun-Earth­
Moo n syste m ha ppe ns to ex hibit a strikin g geo me tric co incid e nce, which we exa m­
ine in th e fi rst prob le m . 

PROBLEM 1. To a n observer on Ea rth , the Sun a nd th e Moo n subte nd a lm ost th e sa me a ngle in 
the sky. T he ave rage a ngle is 0.52 degrees for the Moo n a nd 0.53 degrees for the 
Sun. D e pe nding o n the parti cul ar loca ti on in it s e lliptic o rbit , the Moon ' a ngle 
ra nges between 0.49° a nd 0 .55°, whereas tha t of the Sun ra nges between 0 .52° 
a nd 0 .54°. Thi s is why the M oo n some tim es co mpl e tely bloc ks th e Su n , producin g 
a to ta l so lar ecl ipse. 

a . If th e mea n lu nar and so la r d ista nces a re respect ive ly 3.8 x 105 km a nd 
1.5 x 108 km , wha t is th e ratio of the so la r di a me te r to the lun a r di a me te r , a nd 
what is th e ra ti o of the solar vo lume to the lun ar vo lum e? 

Sun 

M oon 

o 

Fig. 4.1 

Solution: T he geometry of the ecl ipse is illustrated in Fig . 4.1. Sin ce the a ngle at 0 i th e sa me 
for both the la rge a nd th e sma ll triangles and th e triangles a re isosce les , they 
must be s imil a r. Lett ing RM a nd Rs de note the lun a r a nd so la r di sta nces , 
respecti ve ly, a nd DM and Ds the lun ar a nd so lar d ia me te rs, we have 

If VM a nd Vs a re the lun a r a nd sola r vo lum es , respectively , 
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b. Since the angle at 0 is very small , we ca n approx imate the lun ar o r so lar 
diameter by the a rc le ngth of the circle with radius RM or Rs where this arc le ngth 
subte nds the angle at O. Use th e re lati o n s = r8 (8 in radi ans) to de te rmin e the 
actu al va lues of D M and D s. 

Solution: 0.52° = 0.52° x ~;~~ = 0 .0091 rad 

D M = RM (0.0091) = 3.8 x 105 x 0.0091 = 3.5 x 103 km 

0 .53° = 0.0092 rad , by the sa me co nve rsio n just shown 

Ds = R s (0.0092) = 1.5 x 108 x 0.0092 = 1.4 x 106 km 

(Note: The reade r may prefer to avoi d the approx imatio n by using the tange nt 

. . 8 lun ar radius so la r radius 
function-that IS , tan -2 = I d' = I d ' ; note , however , th a t un ar Istance so ar (stance 

to two signi fica nt di gits the res ult is the sa me.) 

PROBLEM 2. All the e nergy to meet needs o n Earth , whether th e energy is na tural or synth e ti c, 
ultimate ly co mes or has come from the Sun in the form of e lectrom agnetic rad i­
ation. There has been much inte res t recentl y in using this radi a nt so urce of e ne rgy 
directly to supplement or suppl a nt the ex isting power so urces . Further , sin ce ou r 
Sun is but o ne of many stars, it is of inte res t to compare its e ne rgy output with tha t 
of ot her celestial objects. 

Solution: 

One measu re of th e total ene rgy radi ated by the Sun rece ived a t a unit a rea of 
the Earth 's surface is ca lled th e solar constant (where radiation is summed ove r a ll 
wavelengths of the e lectro magnetic spectrum). 

A radiometer flown o n the Solar Max imum Miss ion (SMM) is able to measure 
accura te ly th e intensity of solar radi at io n . SMM is a sa te llite in o rbit a round 
Eart h at low a ltitude, and its measureme nts can be used to provide a good es tim ate 
of the so lar co nstant. 

The radiometer o n SMM ad mit so la r radi a ti o n through a small aperture whose 
area is 0 .50 cm2

, and it meas ures the rate of e ntra nce of thi s rad ia ti o n accura te ly. 
The spacecraft attitude (po inting directio n) is co ntro ll ed so that th e e ntra nce ape r­
ture is perpend icul a r to the line of sight between SMM and the Sun. 

a. Over one observa ti on period , radiation ente red the radiometer a t the ra te of 
0.069 watts. What is th e va lue of the so la r constant , S, as de te rmined by this 
observat io n? (Use an ext ra signi fica nt digit in th e a nswer , since this quantity will 
be used in subseq uent calcul a tio ns .) 

S = 0.069 wa~ts = 0.138 watts/cm2 

0.50 cm-

/ 
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b. It is ge ne ra lly ass umed th a t th e Sun e mits radi a tio n uni fo rml y in a ll directi o ns. 
If thi s is true , ca lcul a te the to ta l ra te of e ne rgy radi ati o n by th e Sun. 

Solution: Since t he r adi a ti o n e ne rgy ra te measure ment co nta ins o nl y two signi fica nt di gits , we 
ca n use th e Earth-Sun di sta nce of l. 5 x 108 km as SMM's di sta nce fro m th e Sun 
(see C hapte r 2, Prob le m 8). If the Sun emits uni fo rml y in a ll d irec ti o ns , the to ta l 
ra te of e ne rgy radi a ti o n fro m the Sun is the product o f th e so lar co nsta nt a nd the 
a rea of th e sphe re with radius l.5 x lOB km , o r 1.5 x 10 13 cm. 

Solution: 

Le tting P = to ta l ra te of e ne rgy radi a tio n fro m the Sun , 

P = (S)(4TIr2) 

= (0 .138 wa tts/ cm2) (4TI) (l.5 x lOD cm)2 

= 3.9 x 1026 wa tt s. 

c. The forego in g are typical va lues . Va ri a tio ns of approxim ate ly 0.05 pe rce nt have 
bee n o bserved a t o the r tim es . How much do such va ri a ti o ns affect Sa nd JY1 

6.S = 0.05 X 10- 2 x 0.138 = 6 .9 x 10- 5 wa tt s / cm2 

6.P = 0 .05 x 10- 2 x 3 .9 x 1026 = 2.0 X 1013 wa tt s 

(No te: These va riati o n occur o n a ho rt time sca le (day to day) a nd a re th o ught to 
ave rage to ze ro over a lo ng tim e sca le. A 0.05-pe rce nt sys te ma ti c va ri a ti o n in 
so la r radi a ti o n ove r a time sca le of yea rs could produce s igni fica nt clim a te c ha nges 
o n Earth .) 

d. In 1981. SMM los t po intin g accuracy beca use of a co mpo ne nt fa ilure o n the 
spacec raft. Suppose tha t the o ri e nta ti o n of th e spacec raft cha nged so th a t th e 
line pe rpe nd icul a r ( th e no rm al) to th e e ntr a nce a pe rture made a n a ngle of 30° wi th 
respect to the Sun-S MM line, ra the r th a n be in g pa ra ll e l to it. By how mu ch 
wo uld the rad iatio n e nte rin g th e rad iome te r be cha nged? 

Solution: For simplicity , le t u assume the ape rture is a squ are , AB C D (see Fig . 4 .2), with s ide 
le ngth a, whe re d = 0.50 cm2 Looking a t thi s squa re edge-o n with AD as t he 
tilt ed edge , if D E is pa ra ll e l to the directi o n o f so la r radi a ti o n in cid e nce a nd AE is 
pe rpe ndi cul a r to D E, the a pe rture is effecti ve ly a recta ngle wh ose d ime nsio ns 
a re A B a nd A E. We la be l th e a ngles a , {3 , y , 0 as shown . Since (L a , L (3) a nd 
( L "y. L o) a re co mple men ta ry pairs of a ngles , a nd sin ce L {3 = L y, we have 
L o = L a = 30°, so 6.ADE is simil a r to th e sta nda r<i. 300-600-90° tri a ngle, a nd th e 

ra ti os A2D , DIE , a nd ~ a re eq ua l, giving AE = ~3 A D = 0.866 a. Th e a rea of 

th e effecti ve ape rture is th e refo re (0 .866 a) (a) = 0.866 d. In o th e r wo rds , th e 
radiome te r will registe r o nl y 87 perce nt of wh a t it did befo re los in g 
po inting co ntro l. 

A B .-------. 

D c 

{3 

D 

A 

01 
I 
I 
I 
I 
I 
I 
I 
I 

E Fig. 4.2 
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(We obse rve th a t the result ho ld s fo r ape rtures that a re not square .) 

As observed in pa rt (c) of the fo regoing proble m , one of th e inte res ting outcomes 
of mo de rn advances in th e preci ion with which it is now possible to make mea­
sure me nts of the so la r co nsta nt is that thi quantity is in fact not really a consta nr ! 

PROBLEM 3. So la r ce ll s co nve rt th e ene rgy of sunli ght directl y into e lectrical energy. For each 
sq ua re ce ntimeter of so lar cell in direct ove rhead sun li ght , abou t 0.01 watt of 
e lectr ical power is ava il ab le. A olar ce ll in the shape of a regul a r hexago n is 
req uired to deliver 15 wa tt s. Find the minimum le ngth of a side . 

Solution : T he total area req uired is 15 watts / O.OI watt per squa re ce ntimeter , or 1500 sq uare 
ce ntim e te rs . Th e regu lar hexagon can be parti ti oned into six congruent equi­
late ra l triangles, each with an a rea of 1500/ 6 = 250 sq ua re ce nt imete rs (see 
F ig. 4.3). 

Fig. 4.3 

~ __ h = \3s 
2 

The a rea A of any equil ate ral triangle ~it h side s may be expressed 
1 . s v'3s \!3Sl . 

A = 2: (base) (al tItude) = 2· -2- = -4-· SolvIng fo r s, we have 

f4A _ / 4(250) cm2 _~ 2 _ 
S = V\l3 - \ 1.73 - Y)78 cm - 24 cm . 

PROBLEM 4. So lar ce ll s a re made in vario us shapes to use most of th e late ra l a rea of a te llites . A 
ce rta in circul a r so la r cell with rad ius r will pro duce 5 wa tt s. Two eq uiva len t solar 
cel ls a re made , one being a sq ua re with side s a nd the other an eq uil a teral triangle 
with side p . Find r in terms of p a nd a lso in te rm s of s. 

Solution: For the so lar ce ll s to have equiva le nt o utputs , the ir a reas must be equal. Thus for the 
circl e and sq ua re, we have 

s r =--
Yo 

= 0.564 s. 

For th e circle and equi late ra l tria ngle, we have 

r = p IV3 
V~ 

= 0.371 p . 
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PROBLEM 5. The largest component of th e prelaunch Space Shuttl e co nfi gura ti o n is th e ex te rn a l 
tank , which se rves as th e "gas ta nk " fo r the Orbiter-it contai ns the prope ll a nt 
used by the mai n engin es. Approximately 8.5 minutes afte r launch , when most of 
the propellants have been used, the external tank is jettisoned. It is the o nl y 
majo r part of the Space Shuttl e that is not reused . 

Fig 4.4(a) shows th e laun ch co nfigurat ion with th e back view of the Orbiter , a nd 
Fig. 4.4(b) shows the side view. Fig. 4.5(a) , (b), and (c) show the liquid hydroge n 
ta nk , the inte rt ank , and th e liquid oxygen tank , respective ly. The intertank se rves 
as a mecha nica l co nnecto r be tween th e liquid oxyge n a nd liquid hydrogen tanks , 
and contains the uppe r do me of the liquid hydrogen tank a nd th e lowe r dome of 
th e liquid oxyge n tank . 

a. Using the dimension provided in the diagrams , estimate th e vo lume of each of 
th e ta nk s by di viding the tanks into shapes whose vo lum es a re easy to compute . 

(a) 

Liquid Hydrogen Tank 

29.6 meters 

(a) 

Nosccap7 

Liquid 
Oxygen 
Tank 

Intcn ank 

Liquid 
Hydrogen 
Tank 

Intc rtank 

(b) 

Fig. 4.4 

(b) 

Liquid Oxygen Tank Fig. 4.5 

16.3 meters 

(e) 

Solution: (This is one possible so lution.) T he liquid hydrogen tank has the shape of a cylinde r 
with e llipsoida l caps on each e nd . Since the for mul a for the volume of a he mi­
sphere is better known , le t us app rox im ate the domes as he mi spheres. ow the 
to ta l le ngt h of the ta nk is given as 29.6 m , a nd the dia me ter as 8.4 m ; o ur 
approx im atio n , then , co nsists of two hem ispheres (or a s in gle sphe re) of radiu s 
4.2 m and a cylinder of rad ius 4.2 m and le ngth 29.6 - 8 .4 = 2l.2 m. The re ulting 
vo lum e estim a te is 
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4 4 
3 TIr3 + TIr2h = 3 TI (4 .2)3 + TI (4.2)2 (21.2) 

= 310 + 1170 , or 1480 m3 

T he liquid oxygen tank ca n be approximated by joining a hemisphere of radius 
4.2 m , a cylinde r of radius 4. 2 m and le ngth about 4 m , and a co ne with base radius 
4.2 m and he ight 8.1 m. (This should probably underestimate the vo lume, since 
the tapered sectio n is la rge r than a cone.) Using this di ssectio n , we fi nd th at the 
vo lume es tim ate is 

_2 3 2 1 2 
- 3 TIr + TIr hey1 + 3TIr heone 

= ~ TI ( 4.2)3 + TI ( 4.2)2 ( 4) + ~ TI ( 4.2)2 (8.1) 

= 155 + 222 + 150 

= 527 m3. 

b. The actua l vol umes of the hydrogen and oxyge n tanks , resp ective ly, to the 
nearest m3 a re 1450 m3 and 541 m3. What a re the abso lute and re la tive errors of 
th e es tim ates in (a)? (See Chap ter 2 fo r a di scuss ion of these errors.) 

Solution: For the hydrogen ta nk : 

Absolute e rror = les tim ate - true val ue l = 11480 - 14501 = 30 m3 

. abso lute e rror 30 
Re lative erro r = I x 100% = 1450 x 100% = 2.1 % true va ue 

For the oxygen tank: 

Absolute e rro r = 1527 - 5411 = 14 m3 

R e lat ive e rro r = 5
1
4
4
1 x 100% = 2.6% 

c. The o utside of th e externa l tank is covered with a multil ayered thermal protec­
tive coati ng to withstand the ex tre me temperature variations expected during 
pre launch , launch , and ear ly flight. A ltho ugh there are variations in the exact type 
of materi a l a nd the thickness a t var ious locations o n th e tank , the average thick­
ness is 2 .5 cm. Est im ate the total volume of the insul atio n mate ri a l on the tank , 
assumin g a uni fo rm thickness of2 .5 cm. 

Solution: A simpl e way to ge t such an estimate is to mode l th e ex te rnal tank as three sections: 
th e lowest sectio n is approx im ate ly a he misphere of radius 4.2 m ; th e middle 
secti o n is an open cylinder of rad ius 4.2 m and he ight (47 .0 - 4. 2 - 8 .1) = 34.7 m ; 
the top part is approx im ate ly a co ne of base radius 4.2 m and he ight 8.1 m . The 
vo lume of insul ati o n is the n close to the product of the surface a rea of this figure 
and the thickness 2 .5 em , or 0.025 m . 

The surface a rea of an open hemi sphere of radius r is 2TIr2; the la teral area of a 
cylinder of rad iu r a nd le ngth h is 2TIrh ; the latera l a rea of a cone of radius r and 
slant he ight s is TIrs-in thi case we kn ow the vert ica l he ight h ra the r than the slant 

height , but s , h , and r are re lated by S2 = r 2 + h2, or s = V r 2 + h2 (see Fig. 4.6) . 
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The surface a rea, the n , is 

27T (4 .2)2 + 27T (4 .2)(34.7) + 7T (4. 2)2 Y (4.2)2 + (8. 1)2 

= 111 + 916+ 120 

= 1147 m2
. 

The vo lume, th en , is (1147) (.02S) = 29 m3
. 

p 

Fig. 4.6 Fig. 4.7 

PROBLEM 6. A spacecraft is a t P , a t an a ltitude h above Ea rth 's surface , as pictured in Fig . 4. 7 . 
The dista nce to the ho ri zo n is d, a nd r is th e radius of Earth. 

a. De ri ve an equ ati o n fo r d in te rms of r and h. 

Solution: Beca use PA is ta ngent to th e circ le a t A , a ngle PAO is a right a ngle . Th e n 

= 2rh + h 2 

b. T he sa te llite A tmospheric Explorer 3 (A E-3) has a n e llipti c o rbit with apogee 
he ight 4300 km and pe rigee he ight ISO km . Find the di sta nce fro m A E -3 to the 
ho ri zo n at apogee and pe rigee. The radius of Ea rth , to two signifi ca nt fi gures , 
is 6400 km . 

Solution: A t apogee: 

d = Y2(6400) (4300) + (4300f 

= 100Y 5504 + 1849 

= 8600 km 

A t pe ri gee : 

d = Y2(6400) (1S0) + (150)2 

= 10Y 19200 + 225 

= 1400 km 

( 
I 
t 
I 

I 

~ 
) 
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c. If h is sma ll compared to r, the formula for d found in part (a) can be sim­
plified by dropping the h 2 term , leaving d = ~. Redo the calculations of part 
(a) using the simplified formula and compute the relative errors of 
these approximations. 

Solution: A t apogee: 

Solution: 

d approx. = \ /2(6400) (4300) = 7400 km 

. 8600 - 7400 
relative error = 8600 = 0.14 = 14% 

At perigee: 

d . pprox = V2(6400) (150) = 1400 km 

This agrees with the previous result , and the relative error is O. 

d. For what range of va lues of h is the approximation d = V2rh. accurate to two 
significan t digits? 

We need to know the range of values of h that satisfy the following condition : 

2rh + h 2 < (l.01? (2rh) = 2rh (1.0201) 

h 2 < 0.04rh 

h < 0.04r 

For r = 6400 km , we need h < 256 km. 

From the forego ing, we see th at under certain conditions it is possible to substitute 
a simple for mula for a complicated one witho ut affec ting th e results. Great care 
must be taken , of co urse , to ensure th at the conditions needed for such sim­
plification are in fac t satisfied . Another useful result based on two such approxi­
mat ions is developed in Problem 8. But first we consider the bas ic geometry of 
photographic scale. 
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PROBLEM 7. In F ig . 4. 8 , th e fli ght path of a n a irpl a ne o r sa te llite ca rryin g a camera with it s le ns at 
C is shown by the arrow. T he ca me ra is a t a he ight H a bove th e ground and has 
foca l le ngth f . 

P Q 

H 

B A 

Fig. 4.8 

a. If PO is the im age on th e film of lin e AB o n th e gro und , find the sca le of th e 

picture, th e ra tio ~~ , as umin g th e picture is take n vertica ll y (PA is perpe ndic­

ul a r to bot h th e fi lm a nd th e gro und). 

Solution: Sin ce triangles ABC an d PO C a re simil a r , ~~ = ~. 

Solution: 

b. If Jand H a re in th e sa me unit , th e ra ti o ~ is ca ll ed a 1-1 sca le factor . D ete r­

mine th e 1-1 sca le fac to r for a ph o togra ph take n a t a he ight of 30 km with a 
ca me ra hav ing a 150 mm foca l le ngth . 

L = ] 50 X 10-
3 = 5 X 10-6 

H 30 X 103 

c. If th e ph otograph of part (a) shows an im age of a stra ight road th at meas ures 
l.25 mm o n th e film , how lo ng is th e actu a l road ? 

Solution: Le t L be th e ac tu al le ngth of th e road in me te rs . 

im age le ngt h = 1.25 x 10- 3 
= 5 X 10-6 

ac tu a l le ngth L 

1.25 X 10-3 . -
L = m = 0.25 x 10-' m = 250 m 

5 x 10-6 

d. With curre nt techno logy , it is poss ibl e to make measure me nts o n pho tographs 
to th e nea res t micro n (10- 6 m). Wh a t is the sma lles t actua l le ngth whose im age 
can be measured o n th e ph o togra ph of pa rt (b)? (Thi is called th e reso luti o n of 
th e photogra ph. ) 
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Solution: Le t 5 be th e small es t actual le ngt h in me te rs. Then 

so 

and 

10-
6 

= 5 X 10-6 

5 ' 

5 X 10-6 5 = 10-6 

1 
S=Sm = O.2m. 

The curvature of Earth ca n introduce distortion in a ph otogra ph. We need some 
new te rminology to discuss the co rrectio n for such di stortio n. The point o n Earth 
ve rti ca ll y below th e camera is called the nadir and its im age o n the film is called the 
photograph nadir point. Because th e pho tograph is fl a t , the image of any point 
except th e nad ir will be closer to the photograph nadir point th an it would be if 
Earth we re a lso flat. In the nex t problem , we develop a fo rmula to co rrect fo r this. 

PROBLEM 8. T he geometry of the photographic co rrecti o n for Ea rth 's curvat ure is shown in 
Fig. 4.9. The im age of th e point P is a distance r from th e photograph nadir po int 
Q,fis the foca l le ngth of the ca me ra , and H is its he ight when th e picture was 
take n . In order to ge t a " corrected" picture , we need to place the im age a t P ', in 
the plane of the tangent to the nad ir , N. This mea ns we need to compute !:lr so that 
the corrected im age is a distance r + !:lr from Q. 

Fig. 4.9 

h 

E = PE = R 
E 

a. Show th at!:lr == 2~;2' where R is th e radius of Ea rth. 

Solution: Let h be the vertica l displacement of P ' with respect to P and le t x be the ho ri zo ntal 
displacement of P ' (also of P) with respect to N. We see from the diagram in Fig. 4.9 
that x and h are related. If T is the foo t of the perpe ndicul ar from P to NE , 
where E is the center of Ea rth , then !:lPTE is a right t riangle with PE = R, 
PT = x , and TE = R - h. By th e Pyth ago rean theore m, R 2 = x 2 + (R - h)2, so 
R 2 = x 2 + R2 - 2Rh + h2, givin g x 2 = 2Rh - h 2. Since h is very small co mpare d to 
R, we shall use the approximatio n x 2 == 2Rh. 
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Th ere a re two pa irs of simil a r tri angles in the di ag ram . 

Fo r the inne r pa ir , 

I H + h 
r x 

o r 

Ix = (H + h)r , 

o r 

Ix = Hr + hr. 

For th e o ute r pa ir , 

o r 

Ix = H (r + Llr ), 

o r 

Ix = Hr + HLlr . 

Comparing th e two ex press io ns fo r lx , we see th a t hr = H Llr. Th e n Llr = ~ h "= 
? 

~ ;~ . Now we need ano th e r approx im a ti o n in o rde r to e limin a te x. In the re latio n 

fx = Hr + hr, since h is sma ll compa red to H, we have fx "= Hr , so x 2 = H;;2 . 

. . .. r H 2r2 Hr3 
M aking thi s las t substituti o n , we have 6.1' = 2HR ·7 = 2Rf 2· 

b. F ind th e co rrecti o n Llr and the resultin g r + 6.1' fo r a pho tog raph ic im age take n 
a t a he ight of 92 km with a came ra hav ing a fo ca l length of 132 mm if I' meas ures 
65 .24 mm . Reca ll that R = 6400 km . 

Solution: Si nce H and R a re in km and I' and fa re in mm , if we do no unit co nve rsio ns , we sha ll 
be co mputing 6.1' in mm. 

(92) (65 .24)2 
6.1' = (2)(6400)(132)2 = 0. 11 mm 

r + 6.r = 65.24 + 0.11 = 65 .35 mm 

I 
I 

J 
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The final problems in this chapte r deal with some aspects of planning fo r th e future 
construction of such la rge commercial space structures as the antenn a system in 
the illustration o n page 47. It is planned th at the mate ria ls fo r the an tenna system 
will be carri ed up and the actu a l constructi on done in orbit. This frees the con­
structio n of two considerations: (1) the rigidity that would be re quired for such a 
structure to brea k away from Earth 's grav ity and (2) the stre ngth needed to 
survive transportation into orbit intact. It is , of course , des ira ble to keep to a 
minimum the numbe r of trips needed to transpo rt the compo nents , and consid­
erable effort has gone into the development of mate ria ls th at a re strong and light­
weight and that mainta in the ir properties over a wide range of tempera tures. Let 
us see how successful the effort to minimize the number of trips has been. 

PROBLEM 9. The Space Shuttle can carry 29 500 kg of payload into o rbit in a cargo bay tha t is 
bas ica lly a cylinde r hav ing a le ngth of 18.3 m and a diamete r of 4.6 m . T he 
structure in the illustration has 91 antenn as , each a parabo loida l cap 20 min 
diameter and 2 m deep . The mate ri al fo r th e ante nnas is a knitted meta llic mesh 
weighing 60 g / m2

. 

T he plan for the truss assembly that ho lds the antenn as is shown in Fig. 4 .10 . A 
promising mate ri a l fo r the columns is graphite-epoxy , which combines excelle nt 
strength and sti ffness wi th light weight , hav ing a de nsity of 1522 kg/ m3

. The truss 
assembly shown has 252 copies of the basic repeating e leme nt , with each repeat­
ing e lement consisting of a te trahedron hav ing nine comple te struts as shown in 
Fig. 4.l0(c). T he struts themselves are ho llow columns 10.4 m lo ng with radius 
3.8 cm and thickness 0.57 mm as shown in Fig. 11. 

(c) Basic Repeating Element 

(a) Repeating Tetrahedrons 

Fig. 4.10. Tetrahedral 
truss construction. (b) Complete Tetrahedral Truss 

/ 
! 

No. of Columns per 
Repeating E lement 

Lower cover-3 
Core-3 
Upper cover-3 
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Fig. 4.11 Fig. 4.12 

a. H ow ma ny Shuttle trips wo uld be necessa ry to ge t the we ight o f these e le me nt 
(th e meta llic mesh fo r the a nte nn as a nd the columns fo r the struts) into o rbit ? 

Solution: We sha ll ge t a n approx im at io n for the weight of me ta llic mesh by trea ting the 
a nte nn as as tho ugh they we re circles of radius 10 m . ( In C ha pte r 10 , "Calculus, " 
we sha ll ge t a mo re accura te re ult. ) If we have 91 circles of radius 10 m , the to ta l 
a rea will be (91) ('IT) (10)2 m2, a nd the to ta l we ight of me ta lli c mesh will be 
(91) ('IT) (10)2 (60) g = 1.7 X 103 kg. The vo lume of mate ri a l in each co lumn ca n be 
a pp rox im ated by (2m ) (t) (e) = 2'IT (3 .8 x 10- 2) (0.57 x 10- 3) (10 .4) m3 , so the 
to ta l we ight of th e co lumns is (252) (9) (6.28) (3.8) (0.57) (10.4) (10- 5) (1522) kg = 

4.9 X 103 kg . T he to ta l we ight of th ese ma ter ia ls is (1.7 + 4.9) x 103 kg = 6 .6 X 103 

kg. 269~5: \O~tkgg = 0 .224 , o r about 22 percent of the Shuttl e's we ight capac ity. 

b. We see tha t the Shuttle ca n eas il y carry thi s we ight o n a sing le trip . Now we 
must conside r vo lume: will the ma te ri a ls fit in the ava il a ble space? A ssume th at 
the me ta llic mesh is 7.5 mm thick a nd suff icie ntl y flex ible to pack into a ny sha pe. 

Solution: The ca rgo bay 's cy lindri ca l vo lum e is given by 'ITR 2L = 'IT (2 .3)2 (18.3) m3 = 3.0 x 102 

m3
. We have a lready fo und th a t the to ta l a rea of me ta lli c mes h is (91) (l00'IT) m2 

= 2.9 x 104 m2
, so the to ta l vo lum e of mesh is (2 .9 x 104

) (7.5 x 10- 3
) m3 

= 2.2 x 102 m 3 

T his leaves (3 .0 - 2.2) x 102 m3 = 80 m3 for the co lumn s (a nd a ll the re ma ining 
ha rd wa re needed for assemb ly, which we a re igno ring he re). 

Since th e co lumns are 10.4 m lo ng, they ca nno t be pl aced e nd to e nd in the 18 .3 m 
lo ng cargo bay . We must co nside r how to stack the m mos t efficie ntl y. If we 
co nside r th e cross sectio n of th e stack , we see tha t we need to find the most 
efficie nt way to pack circles in a p lane . It is intuitive ly reaso nab le (a ltho ugh the 
proof is far fro m sim p le) that the max imum efficie ncy is ac hieved wh e n each circl e 
is ta ngent to six o th e rs , as illust rated in Fig . 4.12. Fro m the di ag ra m we see th a t 
each hexagon has sides of le ngth 21', ~h e re I' is th e radius of the circl e, a nd the re ­
fo re has area 6 (1 / 2) (21') CV3r) = 6\131' 2. A lso , each hexago n co nta in s three co m­
ple te circles whose to ta l a rea is 3 ('IT r2). So the frac t io n of a rea occupied by circles is 

3'ITr
2 
=~ = 0.907. 

6\131'2 2\13 



Geometry 

Since the fractio n of space occupied at the bo und ary will be sm alle r than this , le t 
us assume th at the columns pack into the cargo bay so th at 12 pe rcent of the space 
is empty. This means that the columns will pack into a cross-secti onal area equal 
to 1/ 0.88 of their to ta l cross-sec ti onal a rea . We recall th a t ther e were 252 x 9 = 
2268 columns, each hav ing radius 3.8 cm and therefo re a cross-sectio nal area of 
'IT (0.038)2 m2 = 4.5 x 10- 3 m2. The total cross-sectio nal area needed , then , is 
2268 x 4.5 x 10- 3

. . 
0.88 m2 

= 11.7 m2
. Smce the columns a re 10.4 m lo ng , they wtll 

occupy (1 1. 7) (10.4) m3 = 1. 2 X 102 m3 of space . However , there was o nly 80 m3 of 
space left afte r calcul ating the vo lume of the metallic mesh , so it will take more 
than o ne trip to handle the vo lume, even tho ugh the weight is no t a pro ble m . O ur 
success in reducing the we ight now places the foc us of o ur atte ntio n o n vo lume . 

PROBLEM 10. In o rder to fit mo re columns into a smalle r space, the des igne rs realized th a t th ey 
sho uld investiga te the possibility of tapering the columns and the n " nesting" 
them fo r transpo rta tio n , like a stack of paper cups . F ig. 4.13 illustra tes the idea. 
U nder this scheme , each column would be made of two tapere d ha lf-columns, 
with th eir wider openings join ed ; half-columns could then be nes ted for stowage in 
the cargo bay . Tapered columns have been develope d and tested fo r stre ngth . If 
r l is the radius of the smalle r e nd and r 2 the radius of the la rger end , tes ts showed 

r 
th at an optimum taper ra tio is -.!. = 0.41 and th at such a tapere d column is actu­

r 2 

ally stronger ; it can carry a bo ut 30 percent mo re load before buckling th an an 
untapered column of th e same weight. 

----p 

p 

(a) Assembled Column (b) Nested Half-Column Elements 

Fig. 4.13. Tapered Column Concept 

3. If the mean radius is to be 3.8 cm as befo re , and !J. = 0.4 , find the va lues of r l 
r 2 

Solution: We have r l ; r 2 = 3.8 and r l = 0.4 r 2. Clearing th e fractio n and substituting , we get 

1.4 r 2 = 7.6 

7.6 5 4 
r 2 = 1:4 = . cm 

r l = (0.4) (5 .4) = 2 .2 cm . 
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b. F ig. 4.1 4(a) and (b) di spl ay the geometry of th e tube nesting , wh ere d l = 2· r l, 

d2 = 2· r 2, € is the length of a ha lf-column , and D. is the tube-n es ting separatio n . 

Show th at D. == _t_€_ and find an express io n in te rm s of € and D. fo r the number of 
r2 - r l 

ha lf-co lumns th a t will fit into one stack the length of the Sp ace Shuttle ca rgo 
bay. 

Solution: In Fig. 4. 14(b), if we insert th e horizont a l line shown and le tte r some key po ints as 
indica ted (Fig. 4 .15), D.ABE ' and D.B CD are similar , so A B / BC = BE' I CD . We 
have AB = D. , BC = €, CD = r 2 - r l, and we sha ll approximate BE' by B E = t . 

Then , with this approximatio n and th e pro po rti o n above, D. == ---.!.L . 
r 2 - r l 

From Fi g. 4 .14(a) , we have o ne half-column of length € o n the left e nd , in whi ch 

we nest n additi onal ha lf- columns , whe re n = TNT [IS. : - €] . (INT signi fies the 

grea te r integer which is less th an or equal to the number in th e squ are bracke t. ) 
Now the numbe r of half-columns th at will fit into o ne stack is N = 1 + n = 1 + 
INT [ I S. 3D. - €] . 

c. For the truss assembly of Pro ble m 9, de te rmine the vo lum e occupi ed by th e 
strut column s if they are made of half-column s as describe d here a nd nes ted fo r 
stowing in th e cargo bay. 

Solution: We have .e = ha lf-co lumn length = ( 1/ 2) (10 .4) = 5 .2 m 

6. == _ l _€_ = (0.57 x 10-
3
) (5.2~ m = 9 x 10- 2 m 

r2 - r l (5.4 - 2.2) x 10 

N = 1 + TNT [lS.3 - 5.2] = 1 + TNT [145 .6] = 1 + 145 = 146. 
9 x 10- 2 

We had a to ta l of 226S co lumns , o r 4536 ha lf-co lumns , so this mea ns there wi ll be 

TNT [~5:66] = 31 stacks , and o ne additi o nal sho rte r stack . 

Each stack is l S.3 m lo ng (a lth o ugh o ne stack will be sho rte r) a nd has a radiu s of 
5.4 cm , so its vo lume is 1T (0.054)2(1S.3) = 0 .17 m3 T he to ta l vo lume of th e 32 
stacks is a littl e less th an 32 x 0 .17 = 5 .4 m3

. 

B y the a nalys is in the las t part of Pro ble m 9, these stacks will take up g.8~ = 

6 .2 m3 of space in the ca rgo bay , and now th e mate ri a ls for th e truss asse mbl y a nd 
the a ntenn a " dishes" ca n a ll be transpo rted in a single Shuttl e trip . 

- --------------------.~-------~. - -- - - -
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Probability theory and sta ti sti ca l techniques ma ke impo rt ant co ntributio ns to 
th e space program . In thi s chapte r we examine the ro le of pro bability in 
me nu planning, in so me as pects of th e transmiss io n and coding o f spacecraft 

observa tio ns , and in the co ntro l of equipm ent re li ability. So me e le me ntary 
examples of the use o f stati stics a re illustrated in th e fin a l two pro bl ems. 

PROBLEM 1. The ea rl y ma nned spacefli ghts revea led much abo ut the body's respo nse to pro ­
lo nged we ightl ess ness. An inte res tin g and va ried foo d supply was thus needed to 
gua rd aga inst a loss of appe tit e in the fa ce of wh at was lea rned. The foo d supply 
for the crew of the Space Shuttle is ca refull y pl anned to co mpe nsate fo r the high 
e ne rgy require me nts (ave raging 3000 ca lo ries pe r pe rso n pe r day) o f wo rking in a 
fricti o nless e nviro nme nt and the bo dy's te nde ncy to lose esse nt ia l mine ra ls (s uch 
as po tass ium , calcium , and nitrogen) in micrograv ity. The Space Shuttl e food and 
beverage li st co nt a in s mo re th an a hundred in d ividua l items. A ty pica l day 's 
menu might be the fo ll owin g: 

Meal! Meal II Meal 111 

Peaches Frankfurte rs Shrimp cockta il 
Beef pa tt y Turkey te trazz ini Beef stea k 
Scrambl ed eggs Bread (2) Ri ce pil af 
Bran fl a kes Bana nas Brocco li a u gra tin 
Cocoa A lmo nd crunch ba r Frui t cockta il 
Orange drink A pple drink (2) Butte rsco tch pudd in g 

Grape drink 

In ge ne ra l , each mea l III co nta in s a main di sh , a vege tabl e , and two desserts, with 
a n appe ti ze r included every o the r day. The foo d li st co nta in s 10 ite ms cl ass ified 
as main di shes (M), 8 vegetab le d ishes (V) , 13 desse rt s (D ), a nd 3 appe ti ze rs (A). 
H ow many di ffe re nt me nu co mbin a ti o ns a re poss ible in each of the first six days 
of fli ght , ass umin g no di sh is repea ted? 

Solution: Th e number of cho ices is tabula ted be low: 

Day A M V Dl D2 Number of combinafions 

1 3 10 8 13 12 37440 

2 9 7 11 10 6930 

3 2 8 6 9 8 6912 

4 7 5 7 6 1470 

5 1 6 4 5 4 480 

6 5 3 3 2 90 

-------_. --
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PROBLEM 2. T he e lectro ni c tele metry sys tem aboard a spacecraft transmits the da ta of spacecraft 
mo ti o n in the x, y , and z directions. The syste m co nsists of three motio n senso rs, 
a signa l condi tioner , a nd a transmitter. The probability of failure for each motio n 
sensor and for the signal conditi o ner is 0.0001. The probability of failure for the 
transmitter is 0 .001. Assuming th at cqmponent fa ilures a re independent events 
and that the fa ilure of a ny compo nent will render the telemetry sys te m ino pe ra­
tive, co mpute the probability of a spacecraft telemetry success . 

Solution: The probability of success is eq ual to 1 minus th e probability of fa ilure. Therefore , 
the probability of success fo r each sensor a nd th e signal co nditio ne r is 

PROBLEM 3. 

Solution: 

P = 1 - 0.0001 = 0.9999 . 

Similarly , th e probability of success fo r the transmitter is 

P = 1 - 0.001 = 0.999. 

T he probability of success fo r the te le metry system is the product of probabilities 
of success for each compo nent ; that is , 

P = (0.9999)4 (0.999) = 0.9986. 

The signals transmitted by a spacecraft telemetry sys te m are in the form of pulses 
imposed o n a radio bea m, which ca n be interpre ted as binary digits. For exam-
ple , the signal fragment ... 5lJL- . .. will be read as ... 010110 .. . , since th e 
presence of a pulse is read as 1 and the absence of a pulse as O. Each possible 
representation of a 0 or a 1 is ca ll ed a " bit. " 

For a va riety of reasons , eq uipm e nt errors can ca use a 0 to be transmitted instead 
of a 1, or vice versa. As a result , error-detecting codes have been developed to 
improve data reliability. All such codes a re based o n tra nsmitting ext ra bits th a t 
ca n be used' to' de te rmine whether erro rs are present and eve n , for the more 
sop hi sti c!l ted codes , where the e rrors are . Transmitting these ex tra bits , however , 
mea ns that fewer message-carrying bits can be sent in a give n unit of tim e , and so 
transmission re li ab ility must be traded aga inst transm iss ion efficie ncy. Probabi lity 
theory plays an important part in weighing th e trade-offs. 

a) The telemetry system of a certai n spacecraft has a probability of 1 percent of 
transmitting an erro neo us b it. One way to increase data re li abi lity would be to 
repeat each message b it three times. For exampl e , ... 010110 .. . would become 
. .. 000111000111111000 .. . , if no e rro rs occur . If it is decided to inte rpre t any 
of the tripl ets 000 , 001, 010, o r 100 as 0 and a ny of th e trip'l e ts 011 , 101 , 110 , o r 111 
as 1, fi nd the probability of error in the interpretat io n of a message bit , 
assuming the transmission of each bit is independe nt. 

A message bit wi ll be interpreted erro neously if two or three e rro rs have occurred in 
the triplet. ' 

P(2 e rro rs) = G) (0.01)2 (0.99) = 0.000297 

P(3 e rror) = (0.01)3 = 0.000001 

P(2 or 3 errors) = 0.000298 == 0.0003 
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We see th a t we can reduce th e pro bability of a tra nsmiss io n e rro r in a s ingle bit 
fro m 1 pe rcent to 0.03 pe rcent , but at a cost of sending three times as many bits 
as are actua ll y needed fo r the message. To put it a di ffe re nt way , the des ired 
message wo uld be sent o ne-third as quickl y . 

b. Mo re e fficie nt e rro r de tectio n ca n be do ne with parity coding. In thi s me th od , 
a " pa rity bit " is insert ed afte r each strin g of message b its of a prede te rmin e d 
length k so th at the sum of th e (k + 1) bits is ei th e r a lways even (eve n pa rit y) o r 
always odd (odd pa rit y) . For exampl e , if k = 4 and even parity is used , the message 
110100101001 . . . will become 110110010110010 .. . On receiving th e tra ns­
mi ss io n signa ls , an e rro r is de tec ted if the sum of th e appro pri a te fi ve contiguo us 
digits i odd . If th e proba bility of e rro r in a single bit is 1 perce nt , find ( i) th e 
probability of at lea t o ne e rro r in th e tra nsmiss io n of fo ur seque nti a l bits , a nd ( ii ) 
the p roba bility of an unde tected e rror afte r usi ng even-pa rity coding. 

Solution: ( i) The pro bab ility of an e rro r occurring in at leas t o ne of the fo ur bits is 

1- P(no er ro rs in the 4 b its) = 1 - (0 .99)4 

= 1 - 0.9606 == 0.04 , o r 4 pe rce nt. 

(ii ) In eac h se t of five bits under pa rit y cod ing , if 1, 3, o r 5 e rro rs occur , th e sum of 
th e bin a ry di gits will be odd a nd t he e rro r w ill be de tected . If 2 o r 4 digits a re in 
e rro r , thi s will go und e tected. 

P (2 e rro r ) = ( ; ) (0.01)2 (0.99)3 == 0 .00097 

P(4 e rro rs) = (~) (0.01)4 (0.99) == 5 x 10-8 

so 

P (unde tected e rro r) = P (2 o r 4 e rrors) = 0. 1 pe rcent 

By in se rtin g a pa rit y bit afte r each fo ur message bits, we have reduced th e trans­
mi ss io n efficie ncy to 80 pe rce nt of its poss ib le max imum but have reduced th e 
pro babilit y of an unde tected tra nsmi ss io n e rro r in each four- bit " wo rd " fro m 4 
pe rce nt to 0.1 pe rce nt . Howeve r , whe n we do de tec t an e rro r , pa rit y codin g does 
no t te ll us whi ch of th e bits is e rro neo u . In C hapte r 8 , " M atrix A lgebra, " we 
sha ll exa mine the H amming Code , whi ch not o nl y de tects a tra nsmiss io n e rro r but 
a lso te ll s whi ch bit is wro ng. 

j , 
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PROBLEM 4. A n ae rospace co nsulting company is working on th e design of a spacecraft sys tem 
co mposed of three main subsys tems, A , B , and C. The reliability, or probability 
of success , of each subsystem after three periods of operation is displ ayed in the 
fo llowing tab le: 

1 day 3.3 months 8.5 months 

A 0 .9997 0.8985 0.6910 

B 1.0000 0.9386 0.7265 

C 0.9961 0.9960 0.9959 

These re liabi li ties have been rounded to fo ur significa nt digit s. T he 1.0000 in the 
fi rst col umn means th at the likelihood of the fai lure of subsystem B during the 
fi rst day of operation is so remote th at more than fo ur signi ficant digits are needed 
to indica te it. 

a. Consider the case of the series system shown in Fig. 5. 1. If any one (o r more) 
of the subsys tems A , B , o r C fa ils , the entire system will fa il. If p" is the total 
probab ility of success of the system , find p" fo r each of the three ti me periods . 

Fig. 5.1 

Solution: Fo r the firs t 24 hours, 

For a period of 3.3 months , 

For a period of 8.5 months, 

= (0 .9997) (1.0000) (0.9961) 

= 0.9958 . 

= (0.8985) (0 .9386) (0 .9960) 

= 0.8400. 

= (0 .6910) (0 .7265) (0 .9959) 

= 0.5000. 
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b. The sys tem shown in Fig . 5.2 will succeed if B succeeds and a t leas t one of A 
and C ucceeds. Find the probabi lity of success for this system for the 3.3-month 
time pe riod . 

Fig. 5.2 Fig. 5.3 

Solution: The proba bility of success for the portio n of the syste m containing A a nd C is 

PA .C = 1 - P(bo th A and C fa il ) 

= 1 - (0 .1015) (0.0040) = 0 .9996. 

Then 

Ps = PBPA .C = (0.9386) (0.9996) = 0.9382. 

c. For more complicated sys te ms, the use of co nditi o na l probab ility is he lpful. If 
an event A can be di vi ded into n mutua ll y excl usive subeve nts B l , B2 , ... Bn (n 
finite) , then P (A) = P(A IB I ) P(B I ) + P(A IB2) P (B2) + ... + P(A IBn) P (Bn), where 
the nota tio n P (X IY ) designates th e conditio na l probab ility of X give n that Y has 
occurred. 

Consider th e sys te m in Fig . 5.3 , whe re the 3.3-mo nth re liabilities of the sub­
syste ms A , B , C are the a rne as before and the 3 .3-mo nth reliabilities of D and 
E are 0.9216 and 0.9542 , respective ly. Use conditional proba bility to find the 
reliabi li ty (i .e. , Ps) of this system for the 3.3-month pe riod. 

Solution: This sys te m will succeed if anyone of the paths (A ,D ) , (B ,D ), (B ,E) , o r 
(C ,E) succeeds. We can choose B as ou r focus and asse rt th at 
Ps = P (sys tem succeedslB succeeds) PB + P (sys tem succeedslB fails) (1 - PB). oW 
we eva lua te P(sys tem succeedslB succeeds). If the sys te m succeeds give n that B 
succeeds , this mea ns th a t a t least o ne of D and E would have ucceeded, so 

P (syste m succeedslB succeeds) = 1 - (1 - PD) (1 - PE) 

= (0 .9216) + (0 .9542) - (0 .9216) (0 .9542) 

= 0.9964 . 
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Nex t we evaluate P(sys tem succeedslB fa ils) . Fo r the system to succeed in view of 
the fai lu re of B mea ns th at at leas t one of the paths (A, D ) o r (C ,E) must have 
succeeded , so 

P ( ys te m succeedslB fa ils) = 1 - (1 - PAPD) (1 - PCPE) 

= (0 .8985) (0.9216) + (0 .9960) (0 .9542) 

- (0.8985) (0.9216) (0 .9960) (0.9542) 

= 0.9915 

Po = (0.9964)Pa + (0.9915) (1- Pa) 

= (0.9964) (0.9386) + (0.9915) (0.061 4) 

= 0.9961. 

PROBLEM 5. In Prob lem 4a we saw th at the to tal re liability of the syste m dete rio ra tes ra ther 
rapidly in its prese nt stage of des ign , with less than a 50-percent chance th a t it 
wi ll ope rate after 8 .5 months. The re li ab ility of subsystem C re ma ins nearly co n­
sta nt , whe reas the greatest decl ine in re li ability takes pl ace in subsys tem A, 
whi ch contains a parti cul ar part th at is expected to wear out rapidly. The co nsult­
ing firm is asked to determine if enough improveme nt co uld be made in sub-
sys te m A to provide a re liabil ity afte r 8.5 months of 0.7500. Co mpute the 
improve ment needed in subsyste m A . 

Solution: Let x be th e fac tor by which the reliab ility of subsys te m A mu st be mult iplied . T he n , 
as before , 

0 .7500 = (0.6910x) (0.7265) (0.9959) = 0.5000x 

0.7500 
x = 0.5000 = 1.500. 

T he re liab ility of subsyste m A must be 1.500 x 0.6910 = 1.037. T he in crease in 
re li ab ili ty ca nno t be obtained by improv ing subsyste m A a lo ne, sin ce th e 
re li ab ility ca nnot be grea ter than 1. 

T he next problem de monstra tes th e combin ed use of probab ility and co mpute r 
simul ation to dete rmine the vo lume of a n irregul ar so lid. 
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PROBLEM 6. An interna l fuel tank o n a space vehicle has the shape of an e llipso id truncated by 
three planes , as shown in Fig. 5.4. Our problem is to determine the vo lume of 
this fuel tank . Let us use , for an example , the e llipsoi d whose eq uat io n is 
222 

~2 + ~2 + ~2 = 1 and with the planes being x = ±7, and z = -1.5 , where th e units 

are meters. 

Fig. 5.4 
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a. If the tank is surro unded as tightly as poss ible by a recta ngul ar prism with faces 
parallel to the pl anes formed by the coordinate axes, what ineq ualiti es must the 
coordina tes of the ponts inside the prism satisfy? What is the vo lume of this prism ? 

Solution: If (x,y , z) is inside the prism , x must satisfy -7 < x < 7 because of the truncating 
planes x = -7 and x = 7; Y must satisfy -3 <y < 3 because y = -3 and y = 3 are 
the planes tangent to the ell ipsoid and parallel to the x-z plane ; z must satisfy 
-1.5 < z < 2, since z is bounded below by the truncatin g pl ane z = -1.5 and 
above by the plane z = 2 tangent to the e llipsoi d and parallel to the x -y plane. This 
rectangul ar prism has dimension 14 m x 6 m x 3.5 m , and the resulting vo lume is 
294 m] 

b. Let Vp be the vo lume of the prism and let VI be the vo lume of the tank , which 
we are seeking. If a point is randomly chosen inside the prism , express the proba­
bility that it is also inside the tank , in terms of Vp and VI ' 

Solution: This probability is eq ual to VJ V p , the ratio of the vol ume of the tank to that of the 
surrounding prism. 

c. If N points are chosen a t ra ndom inside the prism and I of these points are a lso 
inside the tank , exp ress VI in terms of N , I , and Vp. 

Solution: The probability that I points are in the tan k o ut of th e N points chose n randoml y 
inside the prism is approx imated by 1/ N. So we get 1/ N = VJ V p, giving 
VI = VP(l / N) . 
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d. Write a computer program to pe rform th is simulatio n , using a ra ndom number 
generator to get coordinates of points within the prism, 

10 

lZ 

15 
20 

30 

32 

311 

36 

37 

38 

39 

1I 0 

REM VOLUME SIMULATION USING 
PROBAB I LI TY 

DIM K(Z5); DIM VOL<Z5); DIM P 
CT(25 ) 

M = 
REM INTERNAL FUEL TAN K. TRUN 

CATED ELLIPSOID 
REM BOUNDARIES X· Z/8 A 2 + y· z 

13 " Z + Z · 2/Z · Z = 1 . X= - 7 . }( =7 
• Z= 1 . 5 

PRINT "T HIS PROGRAM COMPUTES 
THE VOLUME OF " 

PRINT "A SPACECRAFT"S INTERNA 
L FUEL TAN K " 

PRINT "WHOSE SHAPE IS A TRUNC 
ATED ELLIPSOID " 

PRINT "W ITH BOUNDARIES Z= - 1 . 5 
, X= - 7 , X =7 , AND " 

PRINT "X " Z/8 · Z PLUS Y · 2 / 3 · Z + 2"' 
Z/2 · = 1 " 

PRINT "THE USER WILL CHOOSE T 
HE NUMBER OF"; PRINT "P OINT S 

IN THE SIMULATION" ; PRINT 
RRINT " HOW MAN Y POINTS DO YOU 

CHOOSE?" 
IlZ INPUT K(M) 
50 PR I NT "COMPUTI NG ... " 
8 0 VP=llI * 6 * 3.5 
90 I = I) 

100 FOR N = TO K(M) 
110 X = - 7 + III * RNO (1) 
120 Y = - 3 + 6 * RND ( I ) 
130 Z = - 1. 5 + 3.5 * RNO ( 1 ) 
111 0 GOSUB 1000 
150 NE XT N 
160 IJ OL<M ) = I) P * I I K( M) 
161 XX = lJOL<M);VOL(M) = WI 
165 PCT ( M) = 100 * I I K ( M) 
166 PX = PCT ( M) ; PCT ( M) P% 
17 0 PRINT I; " OF THE " ; K( M);" PO 

INTS " 
180 PRINT " WERE IN THE TANK ,FOR 

A VOLUME ESTIMATE" 
185 PRINT VOL<M);" CUBIC UNITS. " 

19 0 PRINT" THE PERCENTAGE OF PO 
INTS IN THE TANK" 

200 PRINT " WAS " ; PCT(M ) 
202 GOSUB 150 0 
205 PRINT; PRINT "* * * * * AND 

THER TRIAL? * * * * * " 
210 PRINT; PRINT; PRINT "IF YO 

U WANT TO REDO THE SIMULATIO 
N" 

Z20 PRINT "WI TH THE SAME NUMBER 
OF POINTS , TY PE S" 

Z30 PRINT ; PRINT "WITH A DIFFER 
ENT NUMBER,TYPE 0" 

2110 PRINT ; PRINT ; PRINT "T YPE 
AN Y OTHER LETTER IF FINISHED 

250 INPUT A$ ; M=M + I 
260 IF A$ = "S" THEN K(M) = K(M -

1 ) ; GOTO 50 
IF A$ = "0" THEN 1I 0 
END 

REM TEST POINT 

270 
280 
1000 
1010 P = x * X I 611 + 'I * Y I 9 + 

Z * Z I 1I 
1020 IF P > = THEN 10 ll O 
1030 I = I + 1 
10 11 0 RETURN 
15 00 REM SUMMARY OF TRIALS 
151 0 PRINT ; PRINT " * * * * * S 

UMMARY? * * * * *" 
1520 PRINT; PRINT " DO YOU WANT 

TO SEE A SUMMARY OF THE " 
1525 PRINT "S IM UL ATIONS SO FAR ?" 

1530 
15110 

15115 
1550 
156 0 
1570 
1580 
1590 
1600 

)RUN 

; INPUT B$ 
IF B$ < > "'I" THEN 1600 
PRINT PRINT ; PRINT " 
N PCT ~IOL" 

PRINT 
FOR J I TO M 
HTAB (5) ; PRINT K(J) ; 
HTAB ( 16 ) ; PRINT PCT(J ) ; 
HTAB (Z5) ; PRINT 1.10L<J) 
NE XT J 
RETURN 

TH IS PROGRAM COMPUTES THE VOLUME OF 
A SPACE CRAFT 'S INT ERNAL FU EL TANK 
WHPSE SHAPE IS A TRUNCATED ELLIPSO I D 
WITH BOUNDARIES Z= - 1.5 , X= - 7 , X=7 , 
AND X· Z/8 " 2 + '1 · 21 3 " 2 + 2"'2/Z " 2 =1 
THE USER WIL L CHO OSE THE NUMBE R OF 
POINTS IN THE SIMULATION 

* * * * * SUMMARY? * * * * * 
DO YOU WANT TO SEE A SUMMAR Y OF TH E 
SIMULAT I ONS SO FAR? 
?y 

N PCT ~I OL 

100 71 208 
100 61 179 
ZOO 6Z 183 
ZOO 611 189 
lIOO 62 1811 
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PROBLEM 7. Sunspots were obse rved and reco rded as lo ng as two tho usand yea rs ago. The 
inventio n of th e telescope around 1610 permitted the sys te matic observa tion of 
these solar features , the ir moti on , and their fr eque ncy o f occurre nce. (Pro bl em 6 
of Chapter 7 illustra tes th e use of tri gonometry in analyz ing sunspo t motio n .) It 
is re latively easy to observe sunspots by using a long-focus te lescope to project an 
image of th e Sun o n a piece of white cardboard . 

Fig. 5.5 shows the record fro m 1610 to 1975 of what is now commo nly referred to 
as the " sunspo t cycle ." The ve rti cal scale represents the numbe r of sunspo ts 
observed . T he data since 1740 are conside red re li able. 

A ltho ugh sunspo t a re still not we ll unde rstood , it has been es tablished th a t they 
are regio ns in the so la r atmosphe re tha t contain eno rmo us magne ti c fi e lds re lati ve 
to their surro undings , alo ng with cooler temperatures . Mo reover , there appear 
to be connec ti o ns between the level of sunspot activity and the occurrence of 
" magne tic storms" in Earth 's io nosphe re , the de nsity o f E a rth 's upper atm o­
sphe re , and cha nges in Earth '~ weathe r and climate . 

Since vari ati o ns in upper atm osphe re de nsity can affect the o rbital li fe times of 
s·a te llites , the predictio n of sunspot activity is an impo rtant aspect of the pl an­
ning-of some space miss io ns. Th e mean cycle le ngth as we ll as its va ria bility must 
be take n into af::count , ma king sta tisti cal analys is vita l to such predictio ns. 
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The fo llowing tab le summarizes so me of the data of Fig . 5.5. The first step in the 
statistical analysis for the predicti on of sun pot activity is to determine the mean 
and the standard deviation for each of the following measures: the ri se tim e; the 
fall time; the period from minimum to minimum ; the pe riod from maximum to 
maximum . Compu te these means and sta nd ard deviations. 

Table 5.1 

Year of Year of Year of Year of 
Cycle Minimum Maximum Cycle Minimum Maxi mum 

1 1745 1750.3 12 1867.2 1870.6 
2 1755 .2 1761 .5 13 1878.9 1883.9 
3 1766.5 1769.7 14 1889.6 1894.1 
4 1775.5 1778.4 15 1901.7 1907 .0 
5 1784.7 1788.1 16 1913.6 1917 .6 
6 1798.3 1805.2 17 1923.6 1928. 4 
7 1810.6 1816.4 18 1933.8 1937 .4 
8 1823.3 1829.9 19 1944.1 1947 .7 
9 1833.9 1837.2 20 1954.2 1958.2 

10 1843.5 1848.1 21 1964.6 1970.6 
11 1856.0 1860.1 

Solution: The computations were done by microcomputer. T he program listing and the results 
of the run are shown below and on page 82. 

lLlST 

10 REM SUNSPOT CYCLE 
12 REM VERSION 10/ 8 / 83 1 
18 REM GET INPUT DATA 
2 0 M = 21 
3 0 DATA 1745,1750 .3,1755. 2 ,1 

761.5, 1766.5, 1769.7, 1775. 
5,1778.4,1784.7,1788.1,1 
798.3,1 8 0 5. 2 

32 DATA 181 0. 6 , 1816.a, 1823.3, 
18 28 . 9, 18 33 .8, 1837. 2, 184 

3.5, 1848.1, 1856. 0 , 1860.1, 
1867.2 

34 DATA 1870 . 6,1878.8,1883.8, 
1888.6,1884.1,1801.7 ,180 

7.0,1813.6,1817.6,1823.6 
36 DATA 1828.4, 1833.8 , 1837.a, 

184a . l, 1947.7, 185a.2, 185 
8.2,1864.6,1870 .6 

a o DIM X( M) 
5 0 DIM Y( M) 
6 0 FOR J = 1 TO M 
7 0 READ :{(J) , Y(J) 
8 0 NE XT J 
90 DIM R(M) 
100 DIM F(M) 
11 0 DIM A( M) 
12 0 OIl:! 6 ( M) 
180 GOSU6 1000 
3 00 REM COM PUTE YEA RLY RISE TIM 

E,FALL TIME, MIN-TO-MIN PERI 
00, MA X-TO - MAX PERIOD 

305 FOR J = 1 TO M - 1 
310 LET R( J) = Y(J) - X( J) :R (J) = 

R(J) + 0 . 000 1 

3 12 

320 

322 

330 

332 

3ao 

342 

3115 
350 
400 
al0 
a15 
a16 
a20 
a25 
430 
allo 
£IS O 
aS5 
a6 0 
£165 
a70 
a80 
£190 
a95 
500 
505 
51 0 
520 

Rt. = 1000 " R( J ) :R (J ) = Rt. I 
1000 
LET F (J) = X( J + 1 ) - Y (J) : F 
(J) = F (J) + 0 . 000 1 

F·X. = 1000 " F ( J ) : F (J) = n. I 
1000 
LE T A1J) = X(J + 1 ) - X( J) :A 
( J ) = A1J) + 0 . 0001 

A'X = 1000 * A (J) : A( J) = AX. I 
10 00 
LET 6 (J) = Y(J + I) - Y( J): 6 
( J ) = 6 (J) 0 . 000 1 

ex. = 1000 * 6 ( J ) :6 (J ) = e "X, I 
1000 
NE XT J 
GOsue 2000 
REM COMPUTE AND PRINT MEANS 
PRINT : PRINT "MEAN"; 
DIM 2(M ) 
FOR J = 1 TO M 
LET 2 (J) = R (J) 
NE XT J 
GOSue 3000 
LET RAV = 2AV 
HTAe 8 : PRINT RAV; 
FOR J = I TO M 

2 (J) = F(J ) 
NE XT J 
Gosue 3000 

FAV = 2AV 
HTA6 16 : PRINT FAV; 
FOR J = 1 TO M 

2 (J) = A (J) 
NE XT J 
GOsue 3 000 

AAV = 2AV 
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530 HTAB 2~ : PRINT AAV ; 
536 FOR J = 1 TO M 
5110 Z(J) = B( J) 
5115 NE XT J 
550 GoSUB 3000 
560 BAV = ZAV 
570 HTAB 31l : PRINT BAV 

ORIGINAL 
OF POOR 

600 REM CO MPUTE AND PRINT STANO 
ARo DE VIA TIONS 

605 DIM OeM) 
610 PRINT "S .D. " ; 
620 FOR J = 1 TO M 
630 Z(J) = R(J) 
6110 NE XT J 
650 ZAV = RA'} 
660 GoSUB 110 00 
670 RSo = ZSO 
680 HTA6 9: PRINT RSo ; 
690 FOR J = 1 TO M: Z(J) 

J 
700 ZAV = FAV 
7 10 GoSUB 11000 

F (J) : NE XT 

720 FSO = ZSO : HTAB 16: PRINT FSO 

730 FOR J = 1 TO M:Z (J) = A(J) : NE XT 
J 

7110 ZAV = AAV 
750 GoSUB 11000 
760 ASO = ZSO : HTAB 21l : PRINT ASO 

770 

780 
7 9 0 
800 
810 
1000 
1010 
1020 

1030 
10 11 0 
105 0 
10 6 0 
1070 
10 8 0 
2000 

2010 

2020 

2030 

20110 
20 5 0 
2060 
2070 
20 8 0 
2090 
2100 
2110 
3000 

3010 
3020 
3030 
3 0 11 0 

FOR J = 1 TO M:Z (J) = B(J) : NE XT 
J 

ZAV = 6AV 
GOSUB £1000 

BSO = ZS O: HTAB 31l: PRINT BSO 
END 

REM ECHO INPUT DATA 
HOME 
PRINT "CYCL E YR OF MIN 

YR OF MA X" 
FOR J = 1 TO M 
HTAB 3 : PRINT J; 
HTAB p. PRINT X(J) ; 
HTAB 25 : PRINT Y(J) 
NE XT J 
RET URN 
REM PRINT YEARLY RISE TIME 

,FALLTIME,MIN-MIN PERIoO,MA X 
-MA X PERIOD 

PRINT "ALL TIMES ARE IN YEA 
RS" : PR INT . 

PRiNT "CYCL E RISE FALL 
MI N-MIN MA X- MA X" 

HTAB 9 : PRINT "T IME TIME 
PERIOD PERIOD " 

FOR J = 1 TO M - 1 
HTAB 3 : PRINT J ; 
HTAB 9 : PRINT R(J) ; 
HTAB 16: PRINT F(J ) i 
HTAB 21l : PRINT A(J) i 
HTAB 31l : PRINT B(J) 
NE XT J 
RETURN 
REM CO MPUTE MEAN TO TWO DE 

CIMAL PLACES 
SUM = Z ( 1 ) 

FOR J = 2 TO (M - 1) 
SUM = SU M Z (J) 

NE XT J 

3050 Z = SUM I ( M - 1 ) 
3060 ZX, = 100 .. Z 
3070 ZAV = 21, I 100 
3080 RETURN 
11000 REM COMPUTER STANDARD OEVI 

ATIoNS TO 2 DECIMAL PLACES 
11 020 0 ( 1 ) = Z ( 1) - ZA V 
11030 SUM = 0(1) * 0 ( 1 ) 
il Oil O FOR J = 2 TO (M - 1 ) 
11050 O(J) = 2(J) - 2AV 
11060 SUM = SU M + ( O( J) .. O(J» 
~ 070 NE XT J 
a080 SO = SQR (S UM I ( M - 2» 
11 0 9 0 SO 'X, = 100 .. SO 
a 1 00 2S0 = S01, I 100 
11110 RETURN 

lRUN 
CYCL E 

1 
YR OF MIN 

17115 
2 1755 . 2 
3 1766 . 5 
Il 177 5.5 
5 178a.7 
6 1798.3 
7 1810 .6 
8 1823.3 
9 1833.9 
10 18a 3 . 5 
11 1856 
12 1867.2 
13 1878 . 9 
III 1889.6 
15 19 0 1.7 
16 19 13 . 6 
17 1923.6 
18 1933.8 
19 1911a. 1 
:'0 195~. 2 
21 1961l . 6 

YR OF MA X 
1750 .3 
1761.5 
176 9 . 7 
1778 .1l 
1788.1 
18 05 . 2 
1816 . 1l 
182 9 . 9 
1837.2 
18 a8.1 
186 0 . 1 
1870 .6 
1883 . 9 
189£1. 1 
19 07 
191 7 . 6 
1928 .1l 
1937.1l 
19£1 7 . 7 
1958.2 
197 0 . 6 

ALL TIMES ARE I N YEARS 

CYCLE 

2 
3 
Il 
5 
6 
7 
8 
9 
10 
11 
12 
13 
III 
15 
16 
17 
18 
19 
20 

MEAN 
S . D. 

RISE 
TIME 
5 . 3 
6.3 
3 . 2 
2 .9 
3.1l 
6 . 9 
5 . 8 
6.6 
3.3 
1l.6 
1l .1 
3 . a 
5 
a . 5 
5.3 
a 
£1.8 
3.6 
3 . 6 
a 

a.52 
1 . 19 

FALL 
TIME 
1l .9 
5 
5 . 8 
6 . 3 
1(1 . 2 
5 . £1 
6.9 
a 
6 . 3 
7.9 
7. 1 
8 . 3 
5 . 7 
7.6 
6.6 
6 
5 .£1 
6 . 7 
6.5 
6 .a 

6.1l5 
1.36 

MIN-MIN 
PERIOD 

10.2 
11.3 
9 
9 . 2 
13 . 6 
1:' . 3 
1:'.7 
10 . 6 
9 . 6 
12.5 
11.2 
11.7 
10 . 7 
1:'.1 
11.9 
10 
10 . 2 
10 . 3 
10 . 1 
10.a 

10 . 97 
1.2a 

MA X-M AX 
PERIOD 

11 . 2 
8 . 2 
8.7 
9 . 7 
17 . 1 
11 . 2 
13.5 
7 . 3 
10 . 9 
12 
10 . 5 
13.3 
10.2 
12 . 9 
10 .6 
10 . 8 
9 
10 . 3 
10 . 5 
12 . a 

11. 0 1 
2 .1 7 
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PROBLEM 8. A mong the studies arising from Landsat observations are several conce rning 
the evaluation of properties of snowpacks. In many areas of the wo rld , water 
resources a re heavily dependent on winte r accumulations of snow . 

Compute r models are being deve loped whereby po tential water resources can be 
predicted from sa tellite measurements of microwave emiss ion in snow-covered 
areas . Predictions fro m such models are tested and the mode ls refin ed by making 
co mparisons with 'ground-based measure ments of snow depth and temperature. 
Such measurements, when graphed , inevitably show a large amount of sca tte r , 
and it is the regress ion line fo r the data that is used as the standard fo r comparison . 

Fig. 5.6 shows such a comparison , whe re the horizontal scale is temperature in 
degrees Ke lvin . (The Ke lvin scale of temperature is obtained from the Celsiu s 
scale by adding a constant , 273 .15, so that O°C = 273.15°K , and 
lOoC = 283 .15°K .) 

The data points of Fig. 5.6 are li sted be low. Find the pa ramete rs of the equation 
of the regression line . 

30 

(195.25) (207. 19) (209. 15) 
(209.17) (210.25) (211.20) 

, (211.2 1) (214.21) (2 17.22) 

25 
, 
" 

(2 18.19) (218. 16) (223. 14) 
, (227.20) (228.22) (230. 13) , , (232. 13) (231. 18) (232.17) , , (233.18) (233. I I) (233.8) , , . . (235.2 1) (236.8) (237.5) , 

20 '~ (237.12) (238.8) (239.16) , , (239.6) (240.6) (240.4) 

E 
, , (240.8) (24 1. 8) (242.5) , 

~ , , (243.7) (243.6) (243.3) 
.s:: , (243. I) (245. 1) (247.2) 
i5.. 15 

, 
" • , 

(247.3) (248.4) (249.4) 
0 '. Regression (250.2) (251.3) (252.2) 
~ Model 

, , .. Line 
0 

, (255 . I) 

" Generated . " Vl 
Curve 

, 
" 10 , , . " . ' .... .. , 

'" . 
Model ge nerated curve of the snow depth versus 
the actual depths taken with truck mounted or air· 

' .. craft sensors. . . , . " 
0 

..... , .... 

0 200 2 10 220 230 240 250 260 270 

TaCK) 

Fig. 5.6 
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Solut on: As is the previous problem , the computations were done by microcomputer. The 
program listing and the results follow. 

lLIST 

10 REM SNOW PACK MODEL 
15 PRINT 
20 REM REGRESSION LINE 
30 DATA 195,2S,207 ,19,209 ,15,20 

9rl7,210,25 
40 DATA 211,20,211,21,214, 21 ,21 

7,22,218 rl9 
50 DATA 218,18,223,14,227,20,22 

8,22,230,13 
80 DATA 232,13,231,18,232r17,23 

3,18,233,11,233,8,235,21, 238 
,8,237,5,237,12 

70 DATA 238,8,239,18,239,8 ,240, 
8,240,4,240,8,241,8,242.5,24 
3,7.243,8,243,3 

80 DATA 243 rl,2a5 rI,2a7,2 , 2a7,3 
,2a8.a ,2a9,a ,250,2,251,3,252 
,2,255,1 

90 DIM X( a8) : DIM ','( a8 ) 
100 FOR 1 ; 1 TO a8 
110 READ XC I) : READ Y( I ) 
120 NE XT I 
130 GOSUB 100 0 
la o XSUM O:YSUM; o : sp; o : SO = 

o 
150 FOR = 1 TO a8 
18 0 XSUM XSU M + X(I) : YSUM = YSU 

M + Y( I) 
170 SP = SP + XC I) * Y( I ) :SO = SO 

XCI) * XU) 
18 0 NEXT I 
190 XMEAN = XSUM I a8 : YM EAN = YSU 

M I a8 
200 B = (SP - a8 .. XMEAN * YMEAN ) 

I (SO - 48 .. XMEAN * XM EAN ) 

210 B'X. 
220 AX. 

1000 * B : B = BX I 1000 
100 .. YMEAN:A AX I 100 

225 CX 100 * XMEAN:C CX. / 100 

230 PRINT" THE REGRESSION LINE 
HAS SLOPE ";B 

2ao PRINT" AND A MEAN SNOW DEPT 
H OF " ;A 

250 PRINT" CORRESPONDS TO A MEA 
N TEMPERATURE": PRINT" OF " 
; C 

280 END 

1000 REM ECHO INPUT DATA 
\ClIO PRINT" J","X(I)" '''( I )'' 
1 020 FOR I = 1 TO a8 
1030 PRINT I,X(I),Y(I) 
10ao NEXT I 
1050 PRINT "END OF DATA" 
1080 RETURN 

lRUN 

2 
3 
a 
5 
8 
7 
8 
9 
1 0 
11 
12 
13 
la 
15 
18 
17 
18 
19 
20 
21 
22 
23 
2a 
25 
28 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
ao 
al 
az 
a3 
aa 

x ( I ) 
195 
207 
209 
209 
210 
211 
211 
21a 
217 
218 
218 
223 
227 
228 
230 
232 
231 
232 
233 
233 
233 
235 
238 
237 
237 
238 
239 
239 
2ao 
2ao 
2ao 
2al 
2a2 
2a3 
2a3 
2a3 
2a3 
2a5 
2a7 
247 
2a8 
2a9 
250 
251 

Y ( I ) 
25 
18 
15 
17 
25 
20 
21 
21 
22 
18 
18 
la 
20 
22 
13 
13 
18 
17 
18 
11 
8 
21 
8 
5 
12 
8 
18 
6 
8 
4 
8 
8 
5 
7 
6 
3 
1 
1 
2 
3 
a 
a 
2 
3 

a5 252 2 
a6 255 
END OF DATA 

THE REGRESSION LINE HAS SLOPE - . a5 
AND A MEAN SNOW DEPTH OF 11.3 
CORRESPONDS TO A MEAN TEMPERATURE 
OF 232.83 
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The ea rl y work th a t led to o ur unde rstanding of th e pl ane ta ry mo ti o ns and gave 
us th e descriptio n of the sola r sys tem we know today wo uld have been virtu­
a ll y imposs ible witho ut the use of logarithms to reduce th e labo r of the co m­

puta tio ns. A ltho ugh co mpute rs and ca lculato rs have replaced loga rithms as co m­
puta ti o na l too ls , loga rithmic and ex po ne nti a l functio ns a re still esse nti a l fo r th e 
stud y of Ea rth 's atmosph e re and rocke t pro pulsio n , exa mples of which a re cited 
in thi s chapte r. 

PROBLEM 1. Ex pe rime nta tio n and theo ry have shown tha t an appro xim a te rul e fo r a tmosphe ri c 
pressure at a ltitudes less th an 80 km is th e fo llowin g: Stand a rd a tm osph e ric pres­
sure , 1035 gra ms pe r squ a re centime te r , is ha lved fo r each 5 .8 km of ve rti ca l 
ascent. 

a. Write a s imple expo ne ntia l equ a tio n to e xpress this rule. 

Solution: Le tting P de note a tmo phe ri c press ure at a ltitudes less th a n 80 km a nd h the a ltitude 
in km , we have 

P = 1035 (1 / 2) 11158 g/cm2 

b. Co mpute th e atm osph e ri c pressure at an a ltitude of 40 km . 

Solution: Fro m th e e qu a ti o n of pa rt (a) , 

P = 1035 (1 / 2)40/58 g/ cm2 

= 1035 (1 / 2l9 g/ cm1 

= 1035 (0.0084) g/ cm2 

= 8.7 g/ cm2 

c. Find th e a ltitude a t whi ch th e pressure is 20 pe rce nt of standard a tm osph e ri c 
pressure. 

Solution: Su bs titutin g in th e equ a ti o n of pa rt (a) gives (0 .20) (1035) = (1 035) (1/ 2) 11 /58, wh ere 
h is in km , and so (0.2) = (1/2) 11 /58 . Now, ta king loga rithms , 

log (0.2) = :'8 log (0.5) 

a nd 
log (0 .2) 

h = 5 .8
10g 

(0.5) km = 5.8 (2 .32) km = 13.5 km . 

PROBLEM 2. T he rul e fo r th e va ri a tio n of a tmosph e ri c press ure with he ight which was give n in the 
previo us pro ble m ca n a lso be writte n 

P = 1035 (2) - 11 /58 

= 1035 (2) -017". 

A tmosph e ri c scie nti sts ofte n use thi s rule in o ne of its equi va le nt fo rms wh e re th e 
base is 10 o r e , th e base of th e na tura l logarithm s , in stead of 2 . Find k l and k l so 
th a t P = 1035 (2) -o.m = 1035 (10) -kl ll = 1035 (e) -kz". 

Solution: We need to find k l so th a t 2°17 = lOki . Tak in g loga rithms , 0.17 log 2 = k l o r 
k l = (0 .17) (0 .301) = 0.051. Fo r k2 we have 2° 17 = ek2, o r k 2 = (0 .17) loge2 
= (0.17)(0.693) = 0 .12. 
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PROBLEM 3. So me times di ffe rent bases are used toge the r in the sa me applica tion in a tmosph e ric 
wo rk . Fo r exa mple , atmospheric absorption of e lectromagne tic radi ati o n fro m 
th e Sun and o the r so urces is depe ndent o n the wave le ngths o f the incoming radi­
a tion . Instrume nts ca rri ed by rocke ts , ba ll oo ns , and sa te llites have shown how 
fa r in the a tmosphe re such radia ti on pene trates before be ing reduced by a facto r of 
l / e , the co nventio na l measure used in thi s wo rk . T he results a re given in Fig. 6.1. 
Both the wave le ngth sca le and the a ltitude sca le a re loga rithmic, with the 
ho ri zo nta l sca le in base 10 and the ve rti ca l sca le in base 2. (H ow much of thi s 
info rm ati on co uld be di spl ayed usin g linear scales even o n a wall-sized cha rt ?) 

Fig. 6.1 shows th a t vi sible light and radio waves pe ne tra te the a tmosphe re com­
ple te ly and reach Earth 's surface . H oweve r , gases such as oxygen , ozo ne, nitro­
gen , and wate r vapor abso rb mos t of the infra red , ultravio le t , X -ray , a nd shorte r 
wavelengths. At wha t altitude will so lar infra red radi atio n of wave length 10- 4 m be 
reduced by a facto r of 1/ e? 

400 km 

200 km 

100 km 

50 km 

25 km 

12.5 km 

6 km 

3 km 

102 10- 4 10- 6 10- 8 10- 14 Wave lcngth 
r-:.;-.,---.----i-~~;.._~-'-;-~____.:.;:~,____:-;--.--_i_~_._:_;._~.::..;.._~ in Meters 

" > 

~ 
0 
'i3 
'" a: 

, - , 
e~t 
- 0 ' 
5;:;: 

Visible Light 

Eart h profilc 

J------------LJ.------------jsca leve l 

Fig. 6.1 

Solution: Th e equ al inte rva ls on the a ltitude sca le have length log 2. The o rdin a te we a re 
seekin g , y , is 1/ 4 of the way be tween log 50 a nd log 100. T his mea ns tha t 

1 1 
log y = log 50 + 410g 2 = 1.699 + 4 (0. 3010) 

= 1.699 + 0. 075 = 1.774. 

The n y = 101774 = 59 . 

If a ca lcul a to r with a y X key is ava il abl e , we can so lve this pro bl em witho ut 
actu a ll y findin g loga rithms , as fo ll ows: 

log y = log 50 + ~ log 2 = log [(50)(2)1 /4] = log [(50)( 1. 189)J 

= log 59. Soy = 59. 

In the fo rego ing problem , we saw how the use of loga rithmic scales made it poss i­
ble to di spl ay info rm ati o n over a n ex tremely la rge range of va lues . The nex t two 
problems show a no th er use for logarithmi c sca les , th a t of fittin g a ma th ema ti ca l 
functio n to expe rime nta l data. 
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PROBLEM 4. Very high e ne rgy particl es (electro ns and p roto ns) a re fo und in th e radi a tio n be lts o f 
some pl ane ts (e.g . , Earth , Jupite r , Saturn ), and a plo t of th e numbe r of particl es 
fo und at di ffe rent e ne rgies is ca lled a spectrum. O fte n th e spectrum h a$ a shape 
th at ca n be represented by an equ atio n of the fo rm N = KErn wh ere N is the 
numbe r of pa rticles a t a ce rt a in ene rgy, E; K is a pro po rtio na lity fac to r ; and m is 
called the spectra l index . 

Whe n the spectrum has such a shape, we ca ll it a powe r-l aw spectrum , a nd the 
expe rim ente r studying such a spectrum wants to know the va lu es of m and K. 
Tabl e 6 .1 shows va lues of N meas ured a t severa l Es durin g the fli ght of Pioneer 10 
pas t Jupite r. For th ese data, find th e bes t va lue of m and of K. (N is rea ll y the 
number of particles hitting a de tecto r pe r unit time , o r the co unting rate , which is 
why the num ber ca n be a fr actio n .) 

Table 6.1 

Ene rgy, E Number , N 

0.16 1.0 X 10· 

0.30 

0.60 1.3 X 10' 

1.0 6.8 X 10' 

1.6 1.0 X 10' 

4.5 20 

10.0 

20.0 0. 1 

Solution: Using loga rithms on th e express io n N = KE '" results in log N = log K + m log E, o r , 
to o bta in th e fo rm of a lin ea r equ ati o n y = mx + b, log N = m log E + log K. 

We ca n find loga rithms fo r th e va lues of £ a nd N in th e table (o r we ca n use 
log-log graph pape r a nd circumve nt thi s step) , pl o t th e po ints, and draw th e bes t 
stra ight line th ro ugh thi s se t of po ints . T he n m wi ll be th e slo pe of the lin e, and 
K will be the va lue of N fo r which log £ = O. (Note that this is the va lue that lies 
o n the best stra ight lin e, and no t necessaril y any va lue in the da ta se t. ) 

We o bse rve in Fig. 6.2 th at th e inte rcept o n the log N sca le is 3. 5. Since log 
N = 3.5 when log £ = 0, we have log K = 3.5, so K = 103

- = 3200. The po ints 
3.5 - 0 

(0 , 3.5) a nd (1.0 , 0) are on the bes t fit lin e , so m 0 _ 1.0 - 3. 5. So 

N = (3200) £ - 35 

J 
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LogN LogE 0.6 

6.0 - 0.80 
5.2 - 0.55 0.5 
4.1 -0.22 
3.8 0.0 

0.4 3.0 0.20 
1.3 0.65 
0.0 1.0 R 0.3 

2 - 1.0 1.3 

0.2 

,.. 

V 
VV 

./ 
VI,." 

V 
7 

V 

0.1 

-1 2 

- 1 

Fig. 6.2 
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Fig. 6.3 

2 345678910 
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Many of the contro l functio ns in a space vehicle system are auto matic , handled 
by compute rs and e lectronic feedback devices. H owever , the adaptability and the 
decision-m aking ability of human monito rs of these sys tems, whe th e r crew mem­
be rs o r ground contro lle rs, grea tly increase the overall effectiveness of miss io n 
co ntro l. Because of this , manage rs of proj ects in the space program have become 
inte rested in some results from psychological studies of hum an decision making. 

PROBLEM S. One such study measured the time it took to respo nd whe n face d with va rying 
numbers of choices. Expe rimenta l results are given in the table be low, where N 
is the number of choices presented and R is the reactio n time in seco nds. G raph 
these data o n se mi logarithmic graph pape r with N o n the logarithmic scale (or 
graph R aga inst 10g ION if semilog graph pape r is no t ava ilable) and find an empir­
ica l expressio n fo r reaction tim e as a functi on of th e number of choices. 

N 1 

R 0.17 

2 

0.34 

34 5 67 8 

0.37 0.42 0.48 0.52 0. 56 0.58 

9 

0.59 

10 

0.57 

Solution: T he po ints a re graphed and a " best fit" line drawn (see Fig. 6.3). Since the po int 
(N, R) = (1 , 0.17) does lie o n thi s line , we have R = 0.17 + m 10g lON. To find m , 
we can use the points (1 , 0.17) and (9 , 0. 59) , s in ce bo th are on the " bes t fit" line : 

0.59 = 0.17 + m log lO9 

so 0.42 = m (0.954), 

or m = (0 .42) / (0.954) = 0.44 

The requeste d relatio n is R = 0.17 + 0.4410g lON. 

As we have seen in C hapter 4, so la r ce lls, which conve rt so la r ene rgy into e lec­
trica l e nergy , ca n be used to supply powe r in space vehicles . Nuclear ene rgy 
derived fro m radioactive iso topes is a lso used . N uclear e ne rgy sources gradu a lly 
lose power in a ma nner described by the expo nenti a l functio n . T he nex t p rob le m 
illustrates so me computa tio ns of the ava il able power and o pe ra tio nal li fe of a 
satellite usin g a nuclear powe r source . 
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PROBLEM 6. A satellite has a radio iso tope power suppl y. The power o utput in watts is given by 
the equation 

P = SOe- t/ 250 

where t is the time in days and e is the base of na tura l loga rithms. 

a. H ow much power will be avai lable at the end of o ne yea r? 

Solution: Applying the given equ ation , we have 

P = SOe - 365 /250 

= SOe - J46 

= SO x 0.232 

=11.6 

T hus approximate ly 11.6 watts will be ava il ab le at the end of o ne year. 

b. What is the half-li fe of the power suppl y? In o th er words , how long will it take 
for the power to drop to ha lf its original strength? 

Solution: To find th e ha lf-life , we solve the equ atio n 

25 = 50e- f
/
250 

for t and o bta in 

-t 
2S0 = In O.S 

= -0.693 

t = 250 x 0 .693 

= 173. 

Thus the ha lf-life of the power suppl y is approxim ate ly 173 days. (Note that In x 
is a sho rte r express io n fo r loge x.) 
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c. The equipment aboard the satellite requires 10 watts of power to operate 
properly. What is the operational life of the satellite? 

Solution: Solving the equation 

10 = 50e - 11250 

for l gives 

= In 0.2 

= -1.609 

t = 250 x 1.609 

=402. 

Hence the operationa l life of the satellite is 402 days. 

PROBLEM 7. The theory of rocket flight shows that the ve loci ty ga ined by a la unch vehicle when 
its propellant is burned to dep letion is expressed by the eq uati o n 

v = c In R 

where v is the velocity gai ned by the vehicle during launch ; 
c is the exhaust velocity of the engine; 
In R is 10geR , or the natural logarithm of R; 

takeoff weight 
and R is the mass ratio of the spacecraft, defined by R = b . h . urno ut welg t 

a. The takeoff weight consists of propellant or fue l , F, st ru ct ure, 5 , and payload , 
P. At burnout , assuming a ll the fuel has been used , the re mai ning weight is 5 + P, 

F + 5 + P . 
so that R = 5 . In genera l, the weight offue l ca nnot be more than abo ut 

+ P 
10 times the weight of the structure in order for the vehicle to withstand the 
stresses of operation . Show that if F = 105, then an upper limit fo r R is 11. 

Solution: If F = 105, then R = F;: ; P = 105
5
\5/ P 

_ 11(5 + P) - lOP 
- 5 + P 

lOP 
= 11 - 5 + P :s 11. 

So the largest possible value for R is 11, but we see th at in order to actua ll y 
achieve this value , it is necessary for P to be O--i n o th er words , th e launch vehicle 
could carry no payload! 
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b. The minimum altitude fo r a stable o rbit abo ut E arth is abo ut 160 km . At lower 
altitudes, a ir resistance slows the spacecraft and causes a rapid de te rio ra tio n of 
the o rbit. A s will be shown in Proble m 1 of Chapte r 9 , the spacecraft must atta in a 
velocity of abo ut 7.8 km per seco nd to orbit at 160 km . H owever , in o rde r to 
overcome the re tarding effect of Ea rth 's atmosphere while the spacecraft is 
ascending, the total velocity imparted by th e launch vehicle must be at leas t 9.0 
km / s. What is the minimum exhaust ve loci ty needed by the rocke t engine if 
R = 11? 

Solution: Substituting v =9.0km / s 

and R = 11 in the rocket equatio n , 

9.0 km / s = c In 11 

c = 1 ~'~1 km / s = ;:~ = 3.8 km / s. 

c. The pro pellants used fo r e ngines such as those of the D e lta , Centaur , and 
Saturn launch vehicles co uld produce exhaust ve lociti es ave rag ing a t mos t 3 
km l s, which wo uld not be suffi cient to achi eve orbit. The main engines of the 
Space Shuttle use a mixture of liquid hydrogen and liquid oxygen , which ca n 
produce exhaust velocities of 4 .6 km / s. H owever , in o rde r fo r the Shuttle to per­
fo rm its tasks and re turn to Earth with its crew , it has an R-va lue o f around 3 .5 . 
Could the Space Shuttle achi eve o rbit with its main e ngines? 

Solution: If c = 4.6 km / s , and 

R = 3.5 , th en 

v = 4.6 1n 3 .5 km / s 

= (4 .6) (1.25) km l s 

= 5.8 km / s , 

which is no t sufficient for o rbit. 
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PROBLEM 8. It is apparent fro m the rocke t equ atio n th a t the burn out ve locity increases whe n the 
mass ratio increases. We can ge t a higher mass ratio by using a so lid prope ll ant 
because th e stiff , rubberlike propellant mass serves as part of the structure. If no 
pay load , o r a ve ry small pay load , is included , a so lid-propell ant rocket could 
have a mass ratio of about 19 . A typ ical ave rage exhaust velocity for a so lid pro­
pell ant might be abo ut 2.4 km per second . Co uld this launch vehicle achieve a 
160 km Ea rth orbit? 

Solution: Using the rocket equation, 

v = 2.5 In 19 km / s 

= (2.4) (2.94) 

= 7. 1 km / s , 

which is mu ch less th an th at needed for orbit . 

The so lution to the problem pointed out in the preceding exa mples is to use st ag­
ing. T hat is, the launch vehicle is divided into two or more pa rts, o r stages. As 
soo n as the propellant has been burned in the first stage , there is a brief coast 
during which th e heavy motors a nd structure in the first stage are jetti so ned a nd 
permitted to fall into th e ocea n . Freed fro m this deadweight , the second-stage 
motors are mu ch more effect ive; the same procedure is repeated for th e rema in­
ing stages. 

PROBLEM 9. Let us design a two-stage vehicl e to pl ace a pay load into Earth orbit. We shall make 
some simplifying assumptions to make thi s probl em easier while preserving the 
basic idea: (1) the structure weight of each stage is 10 percent of th e fuel weight , 
the remaining weight being payload ; (2) the ga in in ve locity is di vided equally 
among the stages , each contributing 4.5 km / s to the required final velocity of 9 .0 
km / s; (3) a ll stages use the sa me propell ant with an exhaust ve locity of 3.7 km / s. 
This thi rd assumpti on is generall y not true in practice- for example, the Space 
Shuttle uses so lid rocke t boos te rs in addition to the main engines-but our goal 
here is to see how stagi ng works . For the sake of hav in g a numerical example , we 
shall also assume th at the total weight at liftoff is 5.0 x 104 kg. For this num eri ca l 
example , determin e the weight of fuel to be ca rri ed by each stage, th e structural 
weight of each stage , and the weight of the orbital pay load. 
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Solution: Let FJ, 5" P , represent fuel, st ructure , and payload weight , respective ly, of the first 
stage , and F2 , 52, and P2 those of th e second stage . Since the " pay load" of the 
first stage includes the entire seco nd stage and the orbital pay load , 

First stage: v =c lnR , 

4.5 = 3.7 In R , 

In R , = ~:~ = 1.22 

So F} + 5, + P, = 5.0 X 104 = 3 4 
5, + PI 5, + P, . 

The n 5 + P = ~ . O X 10
4 

= 1 5 X 104 k , , 3 .4 . g 

and F, = (5.0 - 1.5) x 104 = 3.5 )( 104 kg. 

By assumption 1, 5 1 = 0.10 (3.5 x 104
) = 3.5 X 103 kg. 

Then PI = 1.5 X 104 
- 3.5 X 103 = 1.15 X 104 kg. 

Second stage: We aga in have , fro m the rocke t eq uation , 

4.5 = 3.7 In R 2 , 

so 

Also , 

Then 

T herefore , F2 = 1.15 X 104 
- 3 .4 X 103 = 8.1 X 103 kg 

52 = 0.10 (8 .1 x W1) = 0. 8 X 103 kg 

P2 = (3.4 - 0 .8) x 103 kg = 2.6 X 103 kg. 
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Our des ign for the two-s tage launch vehicle may be checked as follows: 

Weight of fue l: kg x 103 

F I ... .. ... . . .. . . .. .. . ... . . .. .. . 35.0 
F2 ... .. . ... . . . .. . .. .. . . . ..... . . .. . . JL1 

Tota l . .. " . . . . . . . . . . . . . . . . . . 43.1 

Weight of structure: 
51 . . . . ..... .. . . . . .. . .. . . . . . . ... . . .. 3.5 
52 . .... .. .. . . .. .. . . . .. . ..... . .. . . . . 0.8 

Tota l . . . .. . .. . . 4 .3 

We ight of orb ita l payload . . . . . . . . . . . . . . 2 .6 

Total weight of vehicle . . . .. . .. .. ... 50.0 = 5.0 X 104 kg 

T hus , a ltho ugh the single-s tage launch vehicle discussed in Pro ble m 7 cou ld no t 
place any pay load into o rbit , this two-stage vehicle can p lace nea rl y 5 percent of 
its weight int o Ea rth orbit. 

PROBLEM 10. Show th at when a ll stages use the same pro pell ant , th e tota l mass ratio of a multiple­
stage laun ch ve hicle is equal to the product of the individu al mass rati os. 

Solution: Ind icate th e burno ut ve locities a nd mass ra tios of the first , second , third stages , and 
so o n , by the subscripts 1, 2 , 3 , and so o n . The n , using a three-stage vehicle as an 
example , 

(Note: Makin g the struct ure stro nger so th at it ca n support la rge pay loads reduces 
the mass rati os . However , if we have severa l stages , th e to ta l mass ra tio ca n 
become ve ry hi gh , prod ucing much grea te r pe rfo rm ance.) 

PROBLEM 11. Usin g the equ atio n derived in Proble m 9, show th at the launch ve hicle constructed 
in Probl em 8 ca n indeed orbit its pay load . 

Solution: G iven R IRz = (3.4) (3.4) = 11.56 

v = 2.7 10gc11.56 

= 3.7(2.45) 

= 9.06 km /s 

T he laun ch vehicle will impart suff icient ve locity to overco me drag losses a nd 
insert the payload into a 160-km Earth orbit. Note th a t dividing th e laun ch 
vehicle into s tages in creases the overa ll mass ratio to 11.56 . 
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Angle measurements and the trigo no metric analys is of such measurements are 
used extensive ly in space science. Among the examples we shall consider 
he re are so me involving transfo rm atio ns between te rres tri a l (o r ce les ti al) and 

spacecraft coordinate systems, a va ri ety of photogramm etric co rrec ti o ns, a nd the 
tracking of spacecraft from stati o ns o n Earth . 

PROBLEM 1. A conventional right-ha nd ed three-dimens io nal spacec raft coo rdin ate sys te m is 
shown in Fig. 7.1. The angul a r mot io ns of th e spacecraft with respect to the X - , 

y - , and z -axes respect ively a re ca lled roil, pitch , a nd yaw, shown in Fig. 7 .1 by 
curved a rrows. We sha ll develop the tra nsformati ons between this coordinate 
sys te m in a moving spacecraft and a reference coordinate sys tem whose o rigin 
coincides with the o ne in the diagram but does not unde rgo ro tatio n. H e re , we 
shall consider a single rotation a t a tim e. In Chapter 8, " Matrix Algebra ," we sha ll 
investiga te a se ries of such ro ta tio ns. 

When the spacec raft performs a rotation , the reference sys tem re mains fixed , but 
the spacecraft coordinate system undergoes the same ro ta tio n as the spacecraft . 
If th e point Q has coordin ates (x , y, z) in the reference sys te m , we need to find its 
coordinates in th e spacecraft sys tem afte r such a rotation takes pl ace. Let us 
consider each of the mot ions ro ll , pitch , and yaw sepa ra te ly. 

a. Let the spacecraft coordin a te system initi a lly co incide with the reference sys­
te m , and let the spacecraft undergo roll thro ugh angle R. Express the coordi­
nates (XR ' YR, ZR) of a point Q on the spacecraft in te rms of (x , y, z) and R after thi s 
mot ion is performed. 

~ 
y 

Fig. 7.1 

o 
Y -------,,----AII 

Ysc 

Q 
Z 

Roll Fig. 7.2 

~x 
Zsc 

Solution: Since the roll is around thex-axis, the x -coordin ate of Q is th e same in both sys tems: 
XR = X . Now conside r the pl a ne para lle l to the y-z plane , which conta in s Q. The 
ro ll moves Q to Q' as shown in Fig. 7.2 . Le t,. = OQ = OQ ' and let L YOQ ' = 8. 
The n L YscOQ' = 8 - R . Q' has coo rdin ates (y , z) in the reference ys tem , where 

y = r cos 8 and z = r sin 8. 



Trigonometry 

In the spacecraft system , Q ' has coordinates (YR , ZR) 

where YR = r cos (e - R) and ZR = r sin (e - R). 

Expanding the sine and cosine of this diffe rence results in 

YR = r cos e cos R + r sin e sin R = Y cos R + Z sin R 

ZR = r sin e cos R - r cos e sin R == Z cos R - y sin R . 

h. Find the comparable transformations if the rotation is either a pitch through 
an angle P or a yaw th rough an angle Y. 

Solution: Fo r a pitch rotation , this takes place around the y-axis , so if the coordinates in the 
spacecraft system are (xp , YP, zp), we have yp = y. We next conside r a plane 
para lle l to the x-z plane , and the analysis will be just as in part (a) with y replaced 
by z, Z replaced by x , and L R replaced by L P, resulting in xp == x cos P - Z sin 
P ; Z p = Z cos P + x sin P. 

A yaw ro tation takes pl ace around the z-axis , so if the coordinates in the space­
craft system are (Xy , yy , Zy), we have Zy == z ; now we co nsider a plane parallel to 
the x-y plane, and this time the analys is is just as in part (a) , with y replaced by x , 
Z replaced by y , and L R repl aced by L Y. The result is Xy = x cos Y + y sin Y ; 
yy = y cos Y - x sin Y. (We note that the right-handed system dictates that a 
positive angle of rotation take pl ace so that the cyclic order x y z x is maintained .) 

c. A n Earth-based computer monitoring th f. coordinates of Jupiter in Voyager 's 
reference frame reco rded Jupiter at (2.03 , - 2.81 , 0.336) (in units equiva lent 
to 105 km ) at one point. If Voyager had perfo rm ed a yaw ro tation of 28° just pri or 
to this reading, what we re Jupite r's coordinates in the spacecraft 
coordina te sys tem? 

Solution: Using (x' , y' , z') fo r the spacecraft coordina te sys tem: 

x ' = x cos 28° + Y sin 28° 

= 2.03 cos 28° - 2.81 sin 28° 

= 0.473 

y' = - x sin 28° + y cos 28° 

= -2 .03 sin 28° - 2.81 cos 28° 

= -3 .43 

Z' = Z = 0 .336 

So the coo rdinates were (0.473 , - 3.43 , 0.336) in these units. 

We next calculate the length of so me of the latitude circles on Ea rth . 
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PROBLEM 2. A lthough Earth is no t rea lly a sphe re , it can be treated as though it we re sphe rical 
fo r many purposes . 

a. Show that the le ngth of any para llel of la titude aro und Ea rth is equal to the 
equato ri al distance around Earth times the cosine of the latitude angle (see 
Fig . 7.3), if we assume a sphe rical shape fo r Earth . 

Fig. 7.3 

Solution: By the definition of the cosine function , cos e = r I R, or r = R cos e. The le ngth 
of the parallel of la titude is Cpo If Ce de notes the equato ri al circumfe re nce of 
Earth , then 

= 2'ITR cos e 

= Co cos e. 

b. Find the length of the 30° paralle l, no rth or south latitude. Use R = 6400 km . 

Solution: Appl ying th e fo rmul a fo r the length of a parallel of latitude derived in part (a) gives 

Cp = (6400 km) (cos 30°) 

= (6400 km) (0 .866) 

= 5500 km. 

c. D etermine the length of the A rcti c Circl e (66°33 ' N). 

Solution: Using the for mul a fro m part (a) , the le ngth is 

Cp = (6400 km)(cos 66°33 ') 

= (6400 km) (0.398) 

= 2500 km . 

.--- ----' 
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d. How far is it " aro und the wo rld " alo ng the paralle l of 80° no rth la titude? 

Solution: Using th e result of part (a) , the distance is 

Cp = (6400 km) (cos 80°) 

= (6400 km)(0.1737) 

= 1100 km. 

PROBLEM 3. Two tracking statio ns s miles apart measure the e leva tion angle of a weathe r balloo n 
to be a and {3, respecti ve ly (Fig. 7.4). D erive a fo rmula for th e a ltitude h of the 
ba lloon in te rms of the angles ex and {3. Igno re Earth 's curva ture . 

a 

x 

Fig. 7.4 

I 
I 
I 
I 
Ih 
I 
I 
I 
I 
I 

Solution: Writing an equation for the co ta ngent of each angle and solving for x gives 

and 

s + x 
cot ex = -h-

x = h cot ex - s 

x 
cot {3 = h 

x = h eat {3. 

Now the two expressio ns for x are eq uated : 

h cot ex - S = heat (3 

so 

h(cot ex - co t (3) = s 

and 

h = s 
co t ex - cot {3 
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PROBLEM 4. A sa te llite trave ling in a circul ar o rbit 1600 km above Ea rth is due to pass directl y 
over a tracking statio n at noo n. Ass ume tha t th e sa te llite takes two ho urs to ma ke 
an orbit and that th e radius of Earth is 6400 km . 

a. If th e tracking ante nn a is a imed 30° above the ho rizo n , a t wha t tim e will the 
sa te llite pass th ro ugh the bea m of the ante nn a? (See F ig. 7.5.) 

Solution: In the tri angle for med by the sta ti o n , the sa te llite , a nd the cente r of Ea rth , y = 120°. 
Fro m th e law of si nes , 

T hen 

and 

The tim e be tween 

sin asin y 

6400 8000 

. _ 6400 sin 120° - 0 693 
sin a - 8000 -. . 

f3 = 16° a nd f3 = 0 .0° is 3
1
6
6;0 (120 min ) 

= 5.3 min. 

T his mea ns tha t the sa te lli te will pass thro ugh th e bea m of th e ante nn a at 
12:00 - 5 .3 minutes , or 11 :54.7 a .m . 
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b. Find the distance between the sa te llite and the tracking station at 12:03 p.m. 

Solution: Computing angle f3 gives 

f3 = 3 min 3600 = 9°. 
120 min 

By the law of cosines, 

x 2 = (6400)2 + (8000)2 - 2(6400) (8000) cos 9° 

= (40.96 + 64 - 101.14) x 106 km2 

= 3 .82 X 106 km2 

x = 1.96 X 103 = 2 .0 X 103 km. 

We have found th at the distance between the satellite a nd the tracking statio n is 
2000 km (to two signi ficant figures) at 12:03 p.m . 

c. At what angle above th e hori zo n sho uld the ante nn a be pointed so that its 
beam will intercept the satellite at 12:03 p.m. ? (See Fig . 7.6 .) 

Noon 

' ~....J...- 2000 

Fig. 7.6 

Solution: Agai n , apply in g the law of sines , 

sin 9° = sin (y + 90°) 
2000 8000 

. ( 90°) - 8000 . 9° - 0 626 
Sin y + - 2000 sin - . 

cos y = 0 .626 

105 



Chapter Seven 

106 

PROBLEM 5. Two of NASA 's tracking stati o ns a re loca ted nea r th e equa to r ; o ne is in Ethiopia , a t 
40° eas t longitude , anoth er nea r Quito , Ecuador , a t 78° west lo ngitude . Assume 
both stations, represented by E and Q in Fig . 7.7 , a re o n th e equ a tor and that the 
radius of Earth is 6380 km . A sa te llite in o rbit over the equ a tor is observed at th e 
sa me in stant from both trackin g sta tio ns. The angles of e leva tion a bove th e hori­
zon are 5° from Quito and 10° from Ethiopia . F ind the di sta nce of th e sate llite 
from Earth at th e instant of ob erva ti o n . 

s 

Fig. 7.7 

Solution: In Fi g. 7.7 , OQ = OP = OE = 6380 km: L QOE = the lo ngitude differe nce of the 
two sta tio ns, so L QOE = 78° - (-40°) = 118°. Since ClQEO is isosceles, 

L OQE = L OEQ = ~ (180° - 118°) = 31°. 

Furthe r , since the ho rizo n is pe rpendicul ar to the radius , L SQE = 5° + (com­
pl ement of L EQO) = 5° + 59° = 64°, a nd L SEQ = 10° + (comple me nt of 
L QEO) = 10° + 59° = 69°. Also , L QSE = 180° - (64° + 69°) = 47°. These angles 
a re a ll shown in Fi g. 7.7 . We a re looking for th e dista nce SP. If we can de termine 
OS , the n SP = OS - OP = OS - 6380 km . We note th at OS is not an angle bisec­
to r for e ither L QOE o r L QSE , so we mu st use an indirect meth od to find OS . 

QE OE 
We can eva lu a te QE from sin 1180 sin 310 ' 

then 

SE QE 
SE from -:-64° = -:-47° : SIn SIn 
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now 

os = Y(OE)2 + (SEl - 2(OE) (SE) cos L OES 

= 103Y 40.70 + 119.68 + 24.24 

= 103Y249 .62 = 1.58 x 104 km . 

So 

SP = 15800 - 6400 = 9400 km . 

Although the Sun is more tha n a hundred times as la rge as Earth , as we noted in 
the first problem of Chapter 4 , it subtends an angle of on ly abo ut half a degree in 
the sky as viewed from Earth. In the next problem , we consider some aspects of 
the observation of sunspots. 

PROBLEM 6. a. Find th e angular separa tion between two large sunspots when viewed from Earth 
(or Earth orbit ) if they are separated by 30° in longitude along the Sun 's eq uator. 
Consider two cases : 

1. A time when the midpoint between the spots is o n the center of the visible disc 
oftheSun; 

2. A time about a week later when the Sun has rotated so that the leading spot is 
just about to go over the Sun 's limb (edge). 

Reca ll that th e Earth-Sun distance is 1.5 x 108 km. The radius of the Sun is 
7 .0 x 105 km . In the first case it will he lp , and in the second it will be necessary , 
to make a suitab le approximation (Fig. 7.8). 

Case (2) 

Fig. 7.8 
107 



Chapter Seven 

108 

Solution: Case 1. In the edge-on drawing shown above we have: 

CD = Earth-Sun distance = 1.5 x 108 km 

CA = CB = radius of Sun = 7.0 x 105 km 

L ABC = 30° and CD bisects L ACB 

Let AE be the perpendicular from A to CD and let h be its length. 

Then 

and 

So 

Then 

CE = h cot L ACE ; 

ED = h cot L ADE ; 

h = CA sin L ACE. 

CD = CE + ED 

= h cot L ACE + h cot L ADE 

= CA sin L ACE cot L ACE + CA sin L ACE cot L ADE . 

cot L ADE = CD - CA sin L ACE cot L ACE = CD - CA cos LACE 
CA sin L ACE CA sin L ACE 

1.5 X 108 - 7 .0 X 105 cos 15° 
7 .0 x 105 sin 15° 

1.5 X 108 - 7 .0 X 105 x 0.97 
7.0 x 105 x 0.26 

= 1.5 X 10
8 

- 6.8 X 10
5 

= 1.5 X 10
8 

= 0 82 X 103 
1.8 X 105 1.8 X 105 . . 

L ADE = arccot 0.82 x 103 = 0.070°, so the angular separation between the 
sunspots = 2 L ADE = 0.14°. A simpler solution can be found if we approximate 
AD by saying AD == CD . Now we can use the law of sines: 

CA AD 
sin L ADC sin L ACD ' 
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then 

sin L ADC = ~~ sin L ACD = ~~ sin L ACD 

= ~:~ : ~~: sin 15° = 4.7 x 10- 3 x 0.26 

and so 

L ADC = 0.07° and L A DB = 2 L ADC = 0.14°. 

Case 2. There is more than one way to solve this , but we present just one 
solution and use an approximation . In the drawing for Case 2 (see Fig . 7.8) , 
construct the perpendicular AE from A to BC. For the approximation, we shal1 

EB CE 
use tan L ADB = BD ' In L1AEC, cos L ACE = CA' so CE = CA cos L ACE = 

7.0 x 105 cos 30° = 7.0 X 105 x 0.87 = 6.1 x 105 km . 

Then EB = CB - CE = 7.0 x 105 - 6.1 X 105 = 0.9 X 105 = 9 X 104 km. 

Now , from our approximation , tan L ADB = 1~5xx1~~8 = 6 x 10-4, giving the 

angular separation L ADB = 0.036°. 

b. The unaided eye can distinguish a sunspot if it is 1.5 minutes of are, or 0.025 
degrees , across. Sunspot sizes are usua l1 y measured in units of 0 .001 of the Sun 's 
area. What is the minimum size of sunspot that can be seen without a telescope? 

Solution: Sun's area = 47Tr2 = 47T(7.0 X 105) 2 km2 = 1967T x 1010 km2
. Since 1 sunspot 

unit = 10-3 of the Sun's area , we have 1 sunspot unit = 1967T x 107 km2
. 

Now if we assume th at we have a sunspot that is approximately a disc sub­
tending an angle of 0.025° at Earth , we see from Fig . 7.9 that the disc has 

rad ius = (Ea rth-Sun distance) x sin(0.02
25

°) 

= 1.5 X 108 x 2.2 X 10- 4 km = 3.3 x 104 km . 

Fig. 7.9 

C -;l 
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Such a disc has area 1T(3. 3 x 104
) 2 km2 

1 sun spot un it 
= 1T( 3 . 3 r x 108 k m 2 X - - -,-..!...--.,.-:;----:: 

1T X 196 X 107 km 2 

108.9 X 107 
. 

196 X 107 sunspot Uni ts 

= 0.55 sunspot units . 

Historical note: Ve ry few sunspo ts exceed an angula r di ame te r o f 1. 5 minutes of 
a rc. Norm all y, the Sun is too dazz ling to permit a n observa tio n of such a sunspo t 
by the unaided eye ; however , if th e Sun is low o n the hori zon and shin es thro ugh 
a thick haze , sunspots ca n be obse rved. Pre te lescopic sunspo t o bserva ti ons have 
been reco rd ed by C hinese and J apa nese viewe rs. (Caution: Never loo k directly a t 
the Sun .) 

The pho tographi c scale fac to r fo r ve rt ica l ae ri al pho tographs was developed in 
Pro ble m 7 of Chap te r 4. We now conside r the situat io n whe n th e came ra is tilt ed 
so tha t th e film is not para lle l to the groun d. T he result of such tilting is shown in 
Fig . 7 .10, where the broken lines rep resent a sq uare grid as it wo uld appea r in a 
ve rti ca l photograph and the so lid lin es show the act ua l image o n a tilt ed pho to­
graph . (This is sometimes ca lled the " keys to ne effect. " ) In o rde r to use th e 
ph otograph to produce an und isto rted pi cture , numeri ca l re lati o nships must be 
es tablished be twee n the actua l shapes and their photographi c im ages. 

I --r--j---'- - -:---'--T--T--

:I~ : i :: \y i 
T 

I J\ I I 1 r-... 1 I 1 1 I 1 
I I' ,I 1 I 1 \ : 

: : I'\.: I .I~ :: 
: I '\ V I I : 
1 1 ,, / \ 1 

r---t--+--+-_"\/-;lI<c-~1 +---t--+----1 Axis of tilt 

: i : /V "~ : : : 

i IV : I : :~l\ 1 
lk1 L L __ L ___ J __ L --~ 
Scale variation on tilted photograph. N A 

Fig. 7.10 Fig. 7. 11 

PROBLEM 7. Fig. 7 .11 shows th e geo metry of th e co nfig urat io n , where the ca me ra is loca ted a t C , 
N is the nadir , V is the photographic nad ir poi nt , P is the image of gro und po int 
A , a nd t is the tilt angle of the film (the acute a ngle made by th e film with the 
ho rizo nta l). If CT is the no rm al from the camera to the film , CT = f , th e foca l 
le ngth of the ca me ra. CN = H is the he ight of th e ca me ra above th e ground , which 
we assume to be level. It is custo mary in th is wo rk to use the film " positi ve " OW 
instead of the " negati ve" PV. T his is ob tai ned by choosing W o n C a nd 0 o n CA 
so th at CW = CV and CO = CPo We let R be the po int o n the film posi ti ve so 
th at CR is normal to the film . 
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a. Le t 8 be the angle made by the line from the camera to th e ground point A with 
respect to the ve rtical, where 8 > 0 if Q and R a re on the same side of CN and 
8 < 0 if they are on opposite sides of CN (8 = L NCQ ). Express th e ra tio of the 
le ngth of the image WQ to the le ngth of NA in terms of 8, t,J, and H fo r the case 
whe re 8 > t. 

Solution: From the geo metry, we see th at since CR ..L WQ , L NCR = L VCT = t and 

QW = QR + RW = f ta n (8 - t) + f tan t 

AN AN H ta n 8 

f . (ta n 8 - tan t) f 
'--'~-----"- + tan t 

1 + tan 8 tan t 
H tan 8 

f tan 8 - f ta n t + f tan t + I tan e tan2 t 

H tan 8 (1 + tan 8 tan t) 

I ta n 8 (1 + tan2 l) 
H tan 8 (1 + tan 8 tan t) 

QW 1(1 + tan2 l) 
A N H (1 + tan e ta n l) . 

b. Show th at if t = 0 (untilted ca mera) o r t = e (camera aim ed at po int A ), the n 

~~ = ~ . (Recall fro m Proble m 7 of Chapte r 4 th at thi s is the sca le fac to r of a 

ve rti cal pho tograph .) 

Solution: For t = 0, tan t = 0 and the result fo llows. Fo r t = e, the seco nd facto r in the 
denomina to r becomes (1 + tan2 t), which cancels , and the result fo llows. 

c. Show th at the result of part (a) still appli es fo r the cases whe re Q is between 
W and R (Fig. 7. 12) and where Q is on the side of CN that does no t co nt ain R 
(Fig. 7. 13), taking into conside ra tion the sign of e. 

Fig. 7.12 Fig. 7. 13 

p 

R 

Q 
w 

N A A N 
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Solution: If Q is be tween W a nd R , the n 

QW = RW - RQ = t ta n { - t ta n (t - 8) 
AN AN H ta n e 

t (1 + ta n2 I) 
H (1 + ta n 8 tan t) . 

If Q is as shown in Fig. 7.13 , t he n 8 is nega tive , a nd the pos itive va lu e of the 
angle in the di agram is ( - 8). 

So 

OW 
AN 

OR - RW 
AN 

t ta n ( ( - e) + ( ) - t ta n ( 

Ht an ( - 8) 

t ta n (t - 8) - t ta n t t (1 + ta n2 t) 
- H ta n 8 H (1 + ta n ( ta n 8) . 

No te th a t thi s impli es (s in ce e is nega ti ve in the las t case) th a t po ints o n th e 
" down " sid e of th e film will have th e ir im ages " stre tched o ut ," wh e reas po ints 
o n the " up" side (a t least those fo r whi ch e > I) will have th e ir im ages ·'shrunk .· ' 

d. Fi g. 7 .10 showed a po int I (ca ll ed the isoce nter) a t wh ich th e re is no di sto rtio n 
in th e sca le of th e tilted pho togra ph . Show th at I is th e po in t of inte rsecti o n of 
the bi secto r of L NCR in Fig . 7.11 with the film pos iti ve QW by es ta blishin g th at a 
ve rtical pho togra ph take n with th e ca me ra in its pos iti o n at C wo uld conta in the 
po int 1. 

Solution: The bi secto r of L NCR is show n in Fig. 7.14 , a lo ng with a ho ri zo nta l thro ugh I th a t 
intersects CN at Y . Since CN is ve rti ca l a nd IY is ho ri zo ntal , L CYl is a ri ght 
a ngle . Tri a ngles C YI a nd CRI have co rrespo ndin g a ngles equa l a nd sha re s id e C I 
a nd a re the refore congrue nt. Sin ce C Y = CR = t, a ve rti ca l pho tograp hi c pos i­
tive a nd th e actu a l ph o togra ph pos iti ve fro m th e sa me ca mer a pos iti o n C bo th 
contain the po int 1. 

t 0 
2 

L R 

N A 

Fig. 7. 14 Fig . 7. 15 
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In Prob le m 8 of Chap ter 4 we developed a formula to correct an ae ri a l photograph 
for distortion due to Earth's curvature. The distortion occurs because the camera 
cannot distinguish how far away an object is-it has no " depth perception. " For 
ae ria l photography, the picture is interpre ted as though everything is in the plane 
tangent to Earth at the nad ir ; in sa te llite photography , as we shall see in Problem 9, 
pictures will be interpreted (unless corrected) as though everything is in the 
horizon pl ane sensed by the satellite. 

PROBLEM 8. Depth perception in hum ans has two aspects , called monoscopic and stereoscopic. 
Monoscopic judgments of distance use onl y one eye and a re based o n an inter­
pretation of re lat ive sizes of objects , shadows , hidde n portions of objects, and 
o ther att ributes of this type ; such judgments are very rough and frequently fa il. 
Ste reoscop ic judgments of di sta nce use both eyes and are quite accurate in most 
people. Stereoscopic judgment depe nds o n the physica l separat ion of the eyes , 
which causes an object to be viewed at a different a ngle by each eye, as shown in 
Fig. 7 .15 . The angle subtended by the "eye base" (the distance LR where Lis 
the left eye and R th e right) at th e object 0 is ca ll ed th e parallactic angle ; it is 
evident that the c loser the ob ject , th e larger the parallactic angle. 

The smallest parallactic a ngle di scernibl e by hum an eyes is abo ut 0.025°, and the 
ave rage ad ul t eyes are spaced about 6.5 cm apart. What is the largest distance at 
which the average ad ult can judge depth? 

Solution: Let d be th e distance of 0 from LR in Fig. 7.15. We prese nt two met hods of sol utio n. 
The first uses the fact that 

tan (~ LLOR) = (~LR)/d, so d = (O .0325)itan(0 .0125°) m 

== 150 m. 

For another app roach , we may approxim ate LR as an a rc of a circl e with radi us d 
where LR subtends a n ang le e = 0.025°. If e is in radians , th en LR = e . d . So 

e = 0.025° = °i~~5 = 0.00044 rad and therefore 

d 0.025 . 150 
= 0.00044 m = m . 

Satellites such as the Landsals, Seasat , and the Synchronous M eteorological Satellites 
(SMS-l and -2) have made it possible to study Earth and its ocea ns , resources, 
and weather patterns as neve r befo re. They have returned observations and data 
th at a re being used by botanists , geo logists, oceanograp hers , a nd meteorologists , 
among oth ers , in numerous projects . To cite just two examples , Landsat observa­
tion s have been u ed in th e assessme nt of so il moisture in ag ri cultura l fields , a nd 
SMS obse rvation s have been useful in pred icting seve re storms. 
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PROBLEM 9. A spacecraft at a distance h from Earth in synchro no us o rbit can see o nl y a po rtio n 
of Ea rth 's surface , as illustrated in Fig. 7 .16. The circle th a t is th e bo und ary of 
thi s sphe rical " cap" will be called the horizon circle, a nd th e spacec raft has se nso rs 
th at ca n recognize thi s ho ri zo n . 

Alth ough every spacecraft uses its hori zon se nso rs to find its angul ar directio n 
with respect to Ea rth 's ce nter , those sa te llites whose purpose is to o bse rve Earth 
ca n a lso use this angle measureme nt to determine the size of the sphe rical cap 
that ca n be observed . 

In Fig . 7.17 , S is the posi ti o n of the spacecraft , C is th e ce nter of Earth, H is a 
point o n th e hor izo n circ le seen by th e spacecraft , P is th e subsa te llite po int 
o n Earth (th e inte rsectio n of Ea rth ' s surface with the line from Ea rth 's center to 
the sa te llite) , a nd Q is the ce nter of the ho rizon circl e. We have SP = h and 
CH = C P = r, the rad ius of Ea rth . p is th e angul ar separa ti o n of the ho ri zon see n 
by the spacecraft from Earth 's ce nte r , and A is the angle su bte nded a t Earth 's 
ce nter by th e radius of the ho ri zon circle. 

Fig. 7. 16 

I 
I 

I 
/ 

L _ 

II 

Fig. 7.17 

c~~~--~------------L-~~ 

a. Find the relationships amo ng p, A, h, and r. 

Solution: Since LlSHC has a ri ght angle at H , sin p = cos A = r ~ h 

b. Listed be low are some Earth-observing sa te llites and the ir perigee or apogee 
distances from Ea rth . For each , fi nd the angul a r radius (A) of the ho ri zo n circle 
see n by the spacecraft. (Earth's radius is 6378 km. ) 

Landsat 2 916 km (apogee) OGO-J 260 km (pe ri gee) 

Seasal 790 km (a pogee) OGO-J 150000 km (apogee) 

SMS-2 36000 km (a pogee) 

(OGO is the Orbiting Geophysical Observatory .) 

1 
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Solution: 

Solution: 
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Using A =: COS- I (_r_ ), for Landsat 2 we have 
r + h 

- -I( 6378 ) - - 1(0 8744) - 29° - cos 6378 + 916 - cos. -. 

Similarl y, we ge t angul ar radii of 27°, 81°, 16°, and 87° for the remaining 
cases, respectively. 

c. If a satellite sees a ho rizon circl e of angular radius 30°, what is its distance 
from Earth? 

° 6378 
cos 30 = 6378 + h = 0.8660 

6378(1 - 0.8660) 
h = 0.8660 = 987 km (to the nearest km). 

In observing Earth from space usi ng spacecraft sensors, distortions a re introduced 
because of Earth 's sphe rical shape. For example, suppose a thick b lack line is 
painted along the equato r , the 10° paralle l of la titude, and the 50° and 90° west 
meridians of l ongitud~ as shown in Fig. 7.18(a). Uncorrected observations of this 
" rectangle" would appear as shown in F ig. 7.1 8(b) . The di agra m in Fig. 7 .19 illus­
trates how this distortio n comes about. A lthough spacecraft sensors can measure 
the angle at which point R on Earth is observed , they cannot measure the distance 
to R-all observations a re interpre ted as though lyin g in the same plane , so the 
image of R is trea ted as though it were at R ' , in the plane of the hor izon circle . 
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Fig. 7.18 
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The data can be corrected by the spacecraft 's co mpute rs so that the information 
relayed to Earth is distortion-free. The actua l compute r program tha t does the 
correction depends a lso on the particular hardware of th e sensors, but the first step 
in the correct ion is to express the relationship among the angle of observation of 
R ( L a) , the angul ar deviation of R from the line joining Earth 's center to the 
sate llite (L f3) , and the angle of observation of the horizon (L p). Since a and p 
ca n be measured, the computer can then find {3 for the pro per mapping of R . 

d. Show that the relationship linking a , {3, and p is given by 

si n p si n {3 
ta n a = ----'---'---

1 - sin p cos {3 . 

Solution: In Fig. 7.19 , if T is the foot of the perpendicular from R to CS , then 

Fig. 7. 19 

ta n a = RT = RT = r sin (3 
TS CS - CT (r + h) - r cos {3 

r . 
--h SID {3 
r + 

r 
1 - -- cos {3 

r + h 

H 

sin p sin {3 

1 - si n p cos {3 

e. If the spacecraft sensors measure L p as 30° and a point R is observed at an 
angle of 25° fro m the sub atellite point , what is the act ual angul a r di spl ace me nt of 
R from th e subsate llite point with respect to Earth 's ce nter? 

Solution: We have L p = 30°, L a = 25°, and we are seeki ng L {3. 

. sin 30° sin {3 
From th e last equation , tan 25° = 1 . 30° {3 , 

- SID cos 

so 

0.446 = (0.5) sin {3 
1 - (0.5) cos {3 

sin /3 
2 - cos {3 , 



r---

\ 

PROBLEM 10. 

Trigonometry 

then 
(0. 466)2 = sin

2 
{3 

4 - 4 cos f3 + cos2 f3 ' 

1 - cos2 f3 0 .217 = -
4 - 4 cos /3 + cos2 f3 . 

Clearing frac ti ons gives 0.868 - 0. 868 cos /3 + 0.21 7 cos2 /3 = 1 - cos2/3, and co l­
lecting terms gives 1.217 cos2 f3 - 0.868 cos f3 - 0.132 = O. 

Then 

f3 
0.868 ± v' ( - 0 .868)2 - 4(1.217)( - 0 .132) 

cos = 
2(1. 217) 

0 .868 ±: V1.3% 
2.438 

Since we know that I f3 1 < 90°, we discard the negative root , and so 

2.050 
cos f3 = 2.438 = 0.841 

We have already seen in Fig. 2.2 of Chapter 2 that the celes tial coordinate syste m 
uses angles of declination and right ascension in a manner analogous to the 
la titude and longitude angles of the coordin ate system of E arth . We now compare 
the three-dimensional spherical coordinate sys tem commonl y used in mathe ­
matics with the one generally used in astron omy and space scie nce. 

Texts in analytic geo metry o r calculus with a nalytic geometry usually define a 
spherical coordin ate system so that if for P(p, 0, ¢) we le t Q be the foo t of the 
perpendicular from P to the x -y plane (Fig. 7 .20), then 

Fig. 7.20 

x 

x 

p = the distance OP, p 2: 0 

e = th e angle made by OQ with the positive x -axis, the positive 
angular direction being a ro tation from OX toward OY, 
o ::; 0 < 2'IT 

¢ = the angle made by OP with the z-axis , with the positive angul ar 
directi on being away from OZ, 0 ::; ¢ ::; 'IT . 

z z 

z Fig. 7.21 z 

y y 
~--------~--~---- y MC~------+-----~---y 

, 
/ , 

Q 

/ 
/ , 

x 

x - __________ _ 
Q 
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In this system , as the reader may veri fy , the tra nsfo rm atio n be tween (x , y, z) and 
(p, (J, cp) are as fo llows : 

x = p sin cp cos () 

y = p sin cp sin () 

z = p cos cp 

I 
P = (x 2 + y 2 + Z 2) 2 

() = (arctan (y / x) 

In the spherical coordina te sys tem used by as tronomers and space scientists , if P 
has coordinates (r, 0, a) and Q is the foo t of the pe rpe ndicular fro m P to the x -y 
plane (Fig. 7 .21), the n 

r = the distance OP , r ~ 0 

o = the angle made by OP with OQ , the positive angul ar di rectio n 
bein g from OQ toward the positive z -ax is , 

-:!!. < o < :!!. 2- -2 

a = the angle made by O Q with the positi ve x -ax is , the positive 
angular directi o n being a ro ta tion from O X toward OY, 
O:s a < 2 1T . 

D evelop the transfo rm atio ns fro m (r, 0, a) to (x , y, z). 

Solution: From the definitio ns , it is evid ent tha t 

1T 
P = r, () = a, cp = "2 - o. 

So we have 

x = p sin cp cos (J = r sin (~ - 0) cos a = r cos 0 cos a 

y = p sin cp si n () = r si n (~ - 0) sin a = r cos 0 sin a 

z = p cos cp = r cos (¥ - 0) = r in 0 

(R eca ll th at 0 is the declina tio n and a th e ri ght ascensio n in the ce les tia l 
coordin a te system .) 

, 
I 

i 
I 
( 

~,. 

I 

J 



Trigonometry 

PROBLEM 11 . On March 5 , 1979 , the spacecraft Voyager 1 passed close to the Jovian moo n 10. T his 
close encounter took place just after Voyager ' s closest radial approach to Jupiter , 
which occurred at abo ut noon on that day. If we set up a Cartesian coordi nate 
sys tem cente red at Jupiter wi th the x -y plane as l o 's o rbita l p lane and the 
Jupiter-to-Sun vector as the positive x-axis (see Fig . 7 .22) , then Voyager ' s 
spherical coordinates at to = 13 ho urs were r = 5.0 , 8 = - 5.00, and a = 127°. 
(We meas ure lengths in units of Jovian rad ii , Rj , where 1 Rj = 70000 km. 
The spherical coo rdin ate system used here is the o ne defined in the 
previous problem .) 

t V\ aCt \ I 
fi 

-r-- j 
\ at If 

'" )< 
'x ~ 

\ \- ~ y.. 
~ 

y 

Fig. 7.22 

a. What was th e Voyager 's rad ial distance fro m Jupite r in km at to = 13 ho urs? 

Solution: r = 5.0 (R j ) = 5.0 x 70000 km = 350000 km 

b. What were its Ca rtes ian (x , y , z) coord in ates in the system defined above ? 

Solution: 

z = 5.0 sin (- 5.0°) = -0.44 R j 

T hree hours later , at t l = 16 hours , its coord in ates were 
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Solution: 

Solution: 

c. Wh at we re Voyager 's Ca rtes ian coordinates a t CI = 16 ho urs? 

z = 6.5 sin (-1.9°) = - 0. 22 RJ 

As yo u ca n see, in the inte rva l Voyager has moved away f rom Jupite r in the anti­
Sun directio n (its x-coo rdin a te has become more nega ti ve), toward th e Sun­
Jupite r line (its y -coo rdin a te has decreased ), and it has moved towa rd Io 's o rbita l 
pl ane (its z -coordin ate has decreased in abolut e va lue). 

If we assume tha t Voyager 's Cartes ian coordin ates change linea rly with time 
be tween Co and Ci> thi s mea ns th at we assum e tha t Voyager has co nsta nt ve locity 
co mpo ne nts in the x , y, and z directio ns . 

d. Unde r thi s assumptio n , wha t a re Voyager 's ve locity co mpo ne nts in the x , y, 
and z directi o ns? 

V = X I - Xo = - 6.3 - (- 3. 0) = -1 1 R / h 
x tl - to 1 6 - 13 . J 

= 1.1 X 70000 km / h = 77 000 km / h 

V = YI - Yo = 1.6 - (4.0) = -0 .8 RJ/ h = 56000 km / h 
Y I I - to 16 - 13 

Zl - Zo -0.22 - (0 .44) 
VI = -_- = 16 _ 13 = 0.073 RJ/ h = 5 100 km / h 

t I to 

e. U nde r th e assumption th at Voyager 's Cartes ian coo rdin ates va ry lin ea rl y with 
tim e , find expres io ns fo r x (I), y (t) . and Z (t). 

Solution: Sincex = Xo + Vx (I - to), we havex = -3.0 - 1.1 (I - co). Sim il a rl y, 

Solution: 

y = 4.0 - 0.8 (l - to) and Z = -0 .44 + 0.073 (I - to). Whil e Voyager was 
moving , 10 had bee n progress in g in its o rbit. Co nside r Io 's o rbit to be a ci rc le of 
radius r = 5.9 and reca ll tha t in thi s coo rdin ate sys tem , Io 's 8 eq ua ls 0 a t a ll 
tim es. A t Co = 13 ho urs o n 5 Ma rch , l o 's ph ase a ngle a was 139°. 

f. Th is ph ase angle is a lin ea r fun ctio n of time. Knowin g th at Io ' s orbita l pe riod is 
42.5 ho urs ( i.e. , it takes 10 42 .5 ho urs to move 360° in a), de ri ve a n express io n 
fo r a(c). 

360 
10 moves thro ugh 42.5 degrees pe r ho ur , and a = 139° a t to, so 

360 (I - to) 
aCt) = 42. 5 + 139 degrees = 8.47 (r - 10) + 139 degrees. 

____ 1 



Solution: 

Solution: 

Solution: 

Trigo no metry 

g. Find Io 's rec tangul ar coordin a tes as fun ctio ns of time . 

x = r cos 0 cos C\' = 5.9 cos (S.47 (c - co) + 139), since cos 0 = 1 

y = r cos osin C\' = 5.9 sin (S.47 (t - to) + 139) 

z = r sin 0 = 0 

h. D erive an express ion for th e separa ti on di stance A be tween Voyager and 10 as a 
functio n of time . Use ~ fo r (t - to). 

From parts (e) and (g) , 

/:12 = [- 3 .0 - 1.1 ~ - 5.9 cos (S .4n + 139)]2 

+ [4 .0 - O.S~ - 5.9 sin (S.4n + 139)f 

+ [-0.44 + 0 . 073~J2 

i. Use a calcul a to r and eva luate A, fo r severa l va lues of~ , in the inte rva l 0 $ ~ $ 3. 
Plo t the res ults , and use the res ulting graph to fi nd whe n Voyager 's closes t 
approach to 10 occurs and at wha t di stance . 

~ A 1.5 

0 1.51 
0.5 1.23 
1.0 0.94 1.0 

1.5 0.62 
2 .0 0.33 /':, 

2.1 0.2S 
2.2 0.26 0.5 

2 .3 0.25 
" 
. 

2.4 0.27 
2.5 0.31 
2.75 0.46 

0 
2 

3.0 0.65 Fig. 7.23 

The graph is shown in Fig . 7.23. 

We see th at the cl oses t approach occurred at t = 13 + 2.3 ho urs = 15 .3 ho urs o n 
March 5 a t a d ista nce of 0.25 RJ, or abo ut 17500 km . 
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j . What are the compone nts of the Voyager-Io e para ti o n vector a t the tim e of 
closest approach? 

L\x = -3.0 - l.1(2 .3) - 5.9 cos (8 .47 x 2.3 + 139)0 = -0.041 RJ 

L\y = 4.0 - 0.8(2.3) - 5.9 sin (8.47 x 2.3 + 139t = + 0.004 RJ 

L\z = -0.44 + 0.073(2.3) = -0.27 RJ 

Th us, Voyager 1 was most ly " below" 10 a t closest approach: its separa tion was 
a lmos t entire ly in the z direc ti o n , pe rpe ndicul ar to l o 's o rbita l pl ane. 
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Matrices a re an invaluable tool in space science, mak ing it possible to organ ize , 
handle , and manipulate , with the a id of computers , large q uantiti es of 
data. Most of the actua l examples in volving matr ix a lgebra are too lo ng a nd 

complex for inclusion here ; however , by considering simplified examples , we can 
get some sense of the role of matrix algebra in this co ntext. 

PROBLEM 1. In Chapter 5 we considered some simple error-detecting binary codes for te le me try . 

Solution: 

A more complex system , the Hamming Code , will not o nl y detect the presence 
of an error in a received message but will ident ify the erro neous bi t in cases where 
a single error has occurred. If two bits are wrong , th is fact wi ll be detected but 
the locations of the errors will not be known. We use a very sim ple example to 
illustrate the method . 

Suppose we have a "message" in the form of a four -bit binary string: that is, the 
message is in the form abed where each of a, b, e, d is 0 or 1. The Hamming matr ix 
for a message of this type is the 4 x 8 matrix H: 

r

o 0 0 0 1 1 
H = 00 1 1 0 0 

010 101 
1 1 1 1 ] 1 

The structure of the matrix is as follows: For a message conta inin g 4 bits, we 
need 23 = 8 columns and 4 rows. The binary num era ls for 0 through 7 , (written in 
3-digit form as 000,001,010 , ... ) are used , in order , as the first three e ntries in 
each column ; the bottom entry is a lways l. A Hamm ing matrix for a 5-b it message 
would need 24 = 16 columns and 5 rows in order to represent the binary num er­
als for 0 through 15 (0000 , 0001 , . .. , 1111) followed by 1 in the co lumn 

If the message we wish to send is abed , we need to use four add itiona l parity bits , 
PI , P2, P3, and P4, and form a message row vector M = [P I P2 P3 a P4 bed]. The 

p"city bits mu<t be a<signed so thatthe pwdu" H . M' ~ [~1'n mod 2 "ithmeti, 

a. Find the conditions that PI, P2, P3, and P4 mu st sat isfy so th at H . MT = [~1 in 
mod 2 arithmetic. 0 

PI 
P1 

H . MT = r~ ~ ~ ~ ~ ~ i ij. ~3 - r~: ; ~ ; ~ ; ~ 1 [~l o 1 0 1 0 1 0 1 P4 - P2 + a + b + d = 0 . 

1 1 1 1 1 1 lIb PI + P1 + P3 + a + P4 + b + e + 1 0 
e 
d 



So the conditions a re P4 + b + c + d = 0; P3 + a + c + d = 0; 
P2 + a + b + d = 0; PI + P2 + P3 + a + P 4 + b + C + d = O. 

b. Find the message row vector if the actual message is 0 1 1 O. 

Matrix Algebra 

Solution: We have a = 0, b = 1, C = 1, d = O. Substituting these values in the preceding 
eq uatio ns in part (a) and solving in mod 2 gives P4 = 0 , P3 = 1 , P2 = 1 , PI = O. 
The message row vector is th en M = [0 1 1 0 0 1 1 0]. 

Solution: 

c. The matrix H . MT is a column vec tor ca lled th e syndrome vector S . In the se t­
ting we are usin g, S will have fo ur components. When a message is received , the 
syndro me vector is fo rmed. If no ne of the bits of M was in e rror , the co mpo ne nts 
of S will all be O. If we find that S4 = 1, we know that an e rror has occurred in 
tra nsmiss ion , and the binary number SI S2S3 gives the number of the component of 
M which is wrong , where the compo nents are numbe red from the left , beginning 
with O. If S4 = 0 and one or more of SI, S2, S3 is 1, then two bits of M are inco rrect , 
but we do not know which two-the error is detectab le but unco rrectab le. If 
there are more th an two erro rs , it is possible th a t they will be " corrected" incor­
rectly or not get detected. 

Suppose the message [0 0 1 1 1 0 0 0] is received. Compute S and , if appropri­
ate , correct the message. 

0 
0 

f! 
000 1 1 1 

11 

1 

~ l~j 011001 1 
10101 0 1 
111 1 1 1 0 

0 
0 

Since S4 = 1, there is an error ; SI S2 S3 = 101base 2 = 5, so the e rro r is in posi tio n # 5 
(reca ll that the fi rst position is #0) and the corrected message is [0 0 1 1 1 1 0 0]. 

In th e las t chapter we developed transformation s fro m a spacecraft coord in ate 
system to a reference sys tem with the same origin when th e spacecraft has per­
fo rmed a roll or a pitch or a yaw rotatio n. Matrix algebra is the na tura l too l to use 
to find the tran sformation in cases where the spacecraft performs a se ri es of such 
rotations. T his is developed in the nex t problem. 

PROBLEM 2. R ecall that in Problem 1 of C hapter 7 , we showed that 

XR = X Xp = x cos P - z si n P X y = x cos Y + Y sin Y 

YR = Y cos R + z sin R YP = Y yy = Y cos Y - x sin Y 

ZR = Z cos R - Y sin R Zp = z cos P + x si n P Zy = z 

where the uppercase R, P, Yare the angles of roll , pitch , and yaw respective ly, the 
coo rdin ates {x ,y ,z) are those of the refere nce sys tem , and th e subscripted coo rdi­
nates a re thbse of the spacecraft coordi nate system after perfo rm ance of th e rota­
tion designated by the subscript. 
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[
xsc ] [X] a. Ex press th ese tr a nsformat io ns in m a trix form ; :: = M· ; where the s u b-

sc ript sc designates the spacecraft coo rdin a te sys te m , by finding MR, M p, My, th e 
m at ri ces of roll , p itc h , a nd yaw , respect ive ly. 

Solution: Express ing each set of transformations above in m a tri x for m , 

o 
cos R 

-sin R 

0] [cos P 
si n R Mp = 0 
cos R sin P 

o 
1 
o 

-s in P] 
o M y = 

cos P [

COS Y 
-s ~n Y 

sin Y O~] 
cos Y 

o 

Solution: 

b. If th e spacecraft a nd refere nce sys te ms are initi a ll y co ncurre nt a nd th e space ­
craft performs in seque nce a ro ll thro ugh a ngle R , a pitch through a ng le P, a nd a 
yaw thro ugh ang le Y, t he n the transform a tion from refere nce sys tem coord in at es 
to spacecraft coo rdin ates will be g ive n by 

[H ~ M . m whe,e M ~ M , . M,· M, . 

M, ~ r~ 
0 

s;n O)G" j ~ 
0 0 

cos 30° 0 
V3 1 

2 2 
-s in 30° cos 30° 3 

0 
2 2 

r cos 45" 
0 -s;n 45" ~ 

V2 
0 

V2 
2 2 

Mp= 0 o = 
0 0 

sin 45° 0 cos 45° V2 V2 
2 

Q 
2 

I V3 
0 -

r cos 60" 
sin 60° 

~j ~ 
2 2 

My = -S iI1

0

600 cos 60° 
V3 1 

0 
2 2 

0 
0 0 1 

~ 

'\ 

J 
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Solution: 

Matrix Algebra 

1 V3 0 V2 
0 V2 1 0 0 

2 2 2 2 

V3 1 0 
V3 1 -

M = M y · Mp· MR = - 0 0 1 0 2 2 2 2 

0 0 1 
V2 

0 
V2 

0 
1 V3 

2 2 2 2 

1 V3 0 
V2 V2 V6 -

2 2 2 4 4 

v'3 1 0 0 v'3 1 
-

2 2 2 2 

0 0 1 
V2 V2 V6 
2 4 4 

V2 V2 + 1 V6 v'3 - - + -
4 8 4 8 4 

V6 V6 v'3 3V2 + 1. -- + -
4 8 4 8 4 

V2 V2 V6 
2 4 4 

[ 0.35 0.93 013] 
='= - 0.61 0.13 0.78 

0.71 -0.35 0.61 

c. The matrix M can be used to find the orientation of th e spacecraft coordinate 
axes with respect to those of the refere nce system in terms of directio n cosines . 

X ~ M -m is a column matei, whose e le ments ace th e dicectio n cosines of the 

spacecraft x-axis with respect to the X - , y - , and z-axes of the refere nce sys tem . 

Similady, Y ~ M -m and i ~ M -m penduce column mateices whose e le ­

ments a re the direction cosines of the spacecraft y - and z -axes , respectively, with 
respect to the reference sys te m. For the motion of part (b) , fin d X, Y, and i , and , 
from these , the angles made by each of the spacecraft coo rdin ate syste m axes 
with those of the refere nce syste m. 

[
1] [0.35] [cos 70° ] X = M· 0 = -0 .61 ='= cos ( - 52°) 
o 0.71 cos 45° 

T he angles between the spacecraft x -ax is and the x -, y -, and z -axes of the refer­
ence system are abo ut 70°, -52°, and 45°, respective ly. 

[
0] [0.93] [cos 22° ] 9' = M · 1 = 0.13 ='= cos 83° 
o -0.35 cos (-70°) 
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The angles between the spacecraft y -axis and the x - , y -, and z -axes of the refer­
ence system are about 22°, 83°, a nd -70°, respectively. 

[
0] [0 .13] [cos 830] Z = M· ° = 0.78 == cos 39° 
1 0.61 cos 52° 

The a ngles between the spacecraft z -axis and the x - , y - , and z -axes of the refer­
ence system are abo ut 83°, 39°, a nd 52°, respectively . 

Analyzing the light emitted from sources in space is a very important part of th e 
astronomer 's or space scientist's task. Some of these sources , such as the stars , 
are too far away for their shapes to be discernible ; but others are close enough for 
the em itting vo lume to be made o ut-that is , light can be seen to come from 
separa te parts of the volume-and such sources are sa id to be " spatially resolved." 
Among such sources are the solar atmosphere , glowin g at temperatures ranging 
from 2500°C to well above a million degrees Celsius , depending on the particular 
loca tio n, and comet tails fluorescing under the Sun's radiation. 

If such a source is transparent to its own radiation-that is , light emitted at any 
point within it can escape from the source vo lume without being scattered o r 
reabsorbed-then an observer looking at a particular area of the surface of the 
source will see the sum of a ll the light emitted behind that area , in the " line of 
sight. " The actual distribution of emitti ng intensity within the so urce , which in 
practice is a lways an unknown function of position , is not directly available to an 
outside observer. 

H owever , when the source geometry is of an especia lly regular o r simple shape , 
such as spher ica l or cylindrical, mathemat ical methods are ava il ab le to " in ve rt" 
the observed intensity data , thereby " reconstructing" the source . 

In the next problem , we illustrate the basic idea with a very simple but concrete 
example in two dimensions. 

PROBLEM 3. Consider a small checkerboard , three squares on a side, on which a few lighted 
candles have been placed in some squares at random , as shown in Fig. 8.1 . If one 
looks down any row , the combined light of a ll the candles in that row will be see n ; 
this combined light is simply the arithmetic sum of the separate candles in the 
row. Referring to the figure, if we look along row 1, the light of three ca ndl es wi ll 
be seen ; whereas , looking along row 3 , we see the light of two candles . In simi lar 
fas hi on , one can look along a co lumn or even along a diagonal. 

~~ ~ 
Fig. 8.1 

~~ ~ 
~ ~ 

\ 

i 

~ 
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Matrix Algebra 

To a "two-dimensional " observer in the plane of the checkerboard , this is , in fact , 
the only direct information available-the actual distribution of the candles on 
the checkerboard is unknown. This observer can , however , designate the number 
of candles in square (ij) as an unknown variable Xi j and proceed to set up a 
system of equations for these nine unknowns: 

Row equations 

X II + XI 2 + X 13 = 3 

Column equations 

X II + X 21 + X 31 = 2 

XI 2 + Xn + X 32 = 3 

Since we need nine equations to solve for nine unknowns , we may look along three 
of the diagonals to get 
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XII = 1; XI2 = 1; X I3 = 0; X 21 = 1; 

Xn = 0; X 23 = 2; X )I = 0; X 32 = 0; 

X )) = 1 

Although it is ce rta inl y poss ible to solve pa rt (b) manu all y, it is no do ubt o bvio us 
th at a compute r solut ion is mo re desirab le even in this vastl y simpli fied co ntext. 
Any of the comme rcia ll y ava il ab le programs to solve such matrix equ a tio ns co uld 
be e mpl oyed to produce the so lutio n to pa rt (b) o r to di scove r th at the so lutio n 
to pa rt (a) is not uniqu e. 

In practice, the phys ical radi a ting so urces encounte red a re mo re co mpl ex in 
seve ra l ways: (a) they a re co ntinuo us di stributio ns ra th e r th an disc re te o nes, as 
in the exa mple just trea ted ; (b) they a re three-dim e nsio na l so urce; (c) th ey do not 
have simp le geo metric shapes; and (d) di stant (as tro no mical) so urces ca nn ot 
usua lly be obse rved fro m a suff icie nt number of directio ns to o bta in a co mpl e te se t 
of emi ss io n data. Wh at this mea ns is th at each ob e rva ti o n must be mode led as 
an integra l rathe r than a simple sum and the integrals are gene ra lly complica ted 
express io ns th at a re di ff icul t to " inve rt. " Howeve r , such in ve rsio ns ca n be car-
ri ed out fo r certain types of loca l radi ating so urces . 

One rece nt example of this sa me technique in the medi ca l fie ld is Compute r-Aided 
To mography, or CAT sca nning, in which X-ray radi a tio n thro ugh a secti o n of th e 
hum a n body is used to mathemat ica ll y reco nstruct a three-dime nsio nal im age o f 
the sec ti o n . Fo r example, o ne kind of sca nn er measures the X-ray inte nsity th a t 
pe ne trates the po rtio n of the body be in g im aged (such as th e bra in o r th e a bdom­
in al cav ity). This sca nne r reco rds the received radi a tio n at 160 di ffe re nt pos iti o ns 
in each sca n directio n ; the enti re un it is ro tated o ne degree a t a time a ro und th e 
head o r abdomen , in a comple te semicircle , to obta in 180 x 160 , or 28800, 
" sums ." Th e compute r the n processes thi s in fo rm ati o n to produce a " picture" of a 
cross secti o n o f the o rga n by reco nstructing the X-ray absorpti o n in each squ are 
(o r " pi xe l" ) of a 160 x 160 grid. Th e compl ex iti e e num e ra ted in th e fo rego ing 
parag raph a lso apply in this co ntex t , requ iring the use of additio nal so phi stica ted 
math e matica l techniques. Howeve r , the bas ic idea of the checke rboa rd model 
unde rli es this useful appli ca tio n . 
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The conic sectio ns playa fundamental role in space science . As shown in the 
A ppendix , any body under the infl ue nce of an inve rse square law fo rce (i .e. , 
whe re fo rce is inve rse ly pro portio nal to the square of distance) must have a 

trajectory that is o ne of the conic sectio ns . In celestia l mechanics the fo rces a re 
gravi tatio nal; however , it is also of inte rest tha t the fo rces of attrac tion o r 
repulsion be tween e lectri ca lly charged particles obey an inve rse squ are law , a nd 
such particles also have pa ths th at are conic sections. 

Telescopes with mirro rs th at a re conic sections a re a lso impo rtant in space tech­
nology because of the ir refl ective properties. We sha ll close this chapte r by con­
side ring the design of an X- ray te lescope tha t requires two re fl ectio ns in sequence 
from surfaces wh ose cross sections are conics . 

In the analysis of orbits , where a celestial body, such as a pl ane t , comet , me teor , 
star , or a rtificial sate lli te moves under gravitatio nal attractio n to a primary celes­
ti al body, the cente r of mass of the primary body is at one foc us of the co nic 
section alo ng which the sa te llite moves . Because the simplest no ntriv ia l conic sec­
tio n is the circle, we sha ll begin with a considera tio n of circula r orbits . (The word 
" nontrivial" is included because a conic sectio n co uld be a po int o r a pa ir of 
inte rsecting straight lines , if the sectio ning plane passes thro ugh the cone 's ve r­
tex .) Most of us unde rstand fro m experience Newto n's fir st law of mo tion , which 
states tha t an object in mo tio n co ntinues in a straight line unless it is acted o n by 
some fo rce . If we wish to make an object move in a circular path rather th an in a 
straight line , we mu st give it a constant push towa rd the center. T hus a centra l, 
o r centripe tal , fo rce is required . For example , whe n we ti e a string to an obj ect a nd 
whirl it in a ci rcle , th e pull of the str ing is the fo rce th a t keeps th e o bj ect in the 

2 

circul ar path . If we represent the centripe ta l fo rce by F" then F, = mv , whe re m 
r 

is the mass of the object , v is its speed or ve locity, and r is the radius of 
th e circle. 

W he n a spacecraft is moving in a circula r orbit abo ut any primary body, the fo rce 
toward the cente r is supplied by the fo rce of grav ity Fl ' Acco rding to Newto n 's 

I f · I . . F GMm I h' . G' h aw 0 unlversa graV itat IO n , 2 = - -2 -. ntis equ a tio n , IS t e constant of 
r 

universa l grav itation , assumed to be constant th roughout the universe ; M and m 
are the masses of any two bodi es ; and r is the distance be tween the ir centers of 
gravi ty. T he ph ys ical situa tion , if the fo rces F, and F2 are equ al , is represented 
in Fig . 9 .1. 

The arrow toward the center represents the fo rce of grav ity, the dashed a rrow 
represents the tangen tia l ve locity of the spacecraft , and the curved a rrow indi­
ca tes the ci rcul ar path . (I n ri goro us use , ve locity is a vector q uantity, beca use it has 
both magnitude and direction , whereas speed , hav ing magnitude o nl y, is a scalar 
quantity . We will be using the symbo l v fo r speed , the magnitude of the ve locity 
vecto r. ) Thus th e fo rce of gravity ho lds the body in the circul a r orbit. 

mv 2 GMm S I ' f . If we set F, = F2 , we obta in - - = - - 2-' 0 vmg Or v gives us 
r r 

v = ~G: . I 
\ 

J 
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This simple equatio n enables us to find circular o rbita l ve locities abo ut any pri­
mary body, if M is the mass of the body and r is the radius of the orbit measured 
fro m the cente r of mass of the body. Because the va lue of GM is constant for any 
primary body, it is convenie nt to subs titute its numerical va lue ra th er than to 
compute the va lue of the product fo r each individua l pro ble m . If the primary body 
is E a rth , then GM = 3.99 x 1014 m3/ s2. Thus fo r bo dies in circula r o rbits 
around Ea rth , 

13.99 X 1014 

-'-. -'--'----'-- m I s 
r 

whe re , of course , the distance r is expressed in me te rs. 

PROBLEM 1. Most manned spacecraft in Earth o rbi t have been placed at a ltitudes of abo ut 
160 km or mo re because a tmosphe ric drag at a ltitudes be low this causes a rath e r 
rapid de te ri o ra tio n of the o rbit. Find the ve loci ty needed for a body to stay in 
Earth o rbi t at an a lti tude of 160 km . 

Solution: Using the give n equ ati o n , 

I 3 .99 X 1014 

VEarth = V (6380 + 160) x 103 m/s 

= 105 ~3.99 I 
654 m s 

= 7.81 X 103 mi s, o r 2.81 x 104 km / h . 

PROBLEM 2. T he fo rmula fo r circular orbita l ve locity is quite ge ne ra l and can be applied to 
circular o rbits abo ut any primary body. G is a universa l co nstant. We need o nl y 
to change the va lue of M whe n we are concerned with ano the r prim ary of di ffe re nt 
mass . 

a. T he mass of the Moon is approxima te ly 0.012 t im es the m ass M of Earth . 
Write a fo rmula fo r finding circul a r o rbita l ve lociti es abo ut the Moo n . 

Solution: Multiplying the numera tor in the prev io us equ ati on by 0.012 , 

~4.8 X 1012 
...:....:....:::.....--=-=- m Is. 

r 
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Solution: 

b. During th e Apollo flights the parking orbit fo r the comma nd and service mod­
ule about the Moon had an altitude of 110 km. The radius of the Moon is about 
1740 km. Find the ve locity in this orbit. 

~ 4.8 X 1012 
v - m / s 

Moon - (1740 + 110) X 103 

= 103v2.6 m/s = 1600 mi s, 

or 5800 km / h . 

PROBLEM 3. A synchro nous Earth sa te llite is one that is placed in a west-to-east orbit over the 
equator at such an altitude that its period of revolution about Earth is 24 hours , 
the time for one rotation of Earth on its axis. Thus the orbital motion of the 
satellite is synchronized with Earth 's rotation , and the satellite appears , from 
Earth , to remain stationary over a point on Earth 's surface below. Such commu­
nication sa te llites as Syncom , Early Bird, lntelsat, and ATS a re in synchrono us 
orbits . Find the a ltitude and the velocity for a synchro no us Earth sate ll ite. 

Solution: The velocity can be fo und fro m the eq ua tion for circular orbital velocity. It can al 0 

be found by dividing the distance around the orb it by the time req uired ; that is , 

2'ITr B hi ' . 1 v = -. ecause t e two ve oCltles are equa , 
t 

2'ITr = ~GM 
t r 

2 

(2;r ) r = GM 

It is apparent that t = 24 hours = 86 400 seconds. Substituting the other values 
yie lds 

_ ) 3.99 X 10 14 x (86400)2 _ 7 "r;::;-;:--; 

r - \j 4 x (3.14)2 - 10\175.4 

= 4.22 X 107 m, or 42200 km 

Altitude = 42 200 - 6400 km = 35 800 km 

v = 2 x 3.1 i: 42 200 = 1. 10 x 10· k m I h r 
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d 
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Fig. 9.3 

Fig. 9.2 

To understand orbits, we must know something of the nature and properties of th e 
conic sections . They get their name , of co urse, from the fac t that they can be 
formed by cutt ing or sectioning a complete right circular cone (of two nappes) with 
a plane. Any plane perpendicular to the axis of the co ne cuts a section th a t is a 
circle. Incline the plane a bit, and the section formed is an ellipse. Tilt the plane 
still more until it is para ll el to a ruling of the cone and the section is a parabola . 
Continue ti lting until the plane is parallel to the ax is a nd cuts both nappes , and the 
section is a hyperbola , a curve with two branches . It is apparent th at closed 
orbits are circles or ellipses. Open or escape orbits are parabolas o r hype rbo las 
(see Fig. 9.2) . 

Another way of classifyi ng the conic sections is by means of the ir ecce ntricity. 
Let F be a fixed point (focus) and d a fixed lin e (d irectrix ). For no nzero values of 
eccentricity e, a conic section may be defined as the locus of points such that the 
ratio of the distance PF to the distance from P to d is the constant e. The use of 
po lar coord in ates permits a unified treatment of the conic sectio ns, and it is the 
polar coordinate eq uat ions of these curves that are used in celest ia l mechanics. 

PROBLEM 4. Use the eccentricit y definition above to show that the eq uatio n of a co nic sect ion in 
ep . d. 

polar coordinates can be stated as r = 1 e ' whe re p IS th e Ista nce - e cos 
between F and d , and the polar axis is perpendicular to, and po inting away from d , 
with the pole at F as shown in Fig. 9.3. 

Solution: If 0 is the foot of the perpendicular fro m P to d , and P has coo rdin a tes Cr, e), the n , 
by definition , 

I PF I r 
e = PO = P + r cos e 

r = ep + er cos e 

r - er cos e = ep 

r(l-ecose)=ep 

r= ep 
1- e cos e . 
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Fig. 9.4 shows a fam il y of conics , each of which has d irectrix d a nd focus Fo, fo r 
different va lu es of e. If a Cartesian coordi nate system has origin Fo a nd x-ax is 
a long the polar ax is , th e Cartesian equati ons of these conics have this fo rm: 

Fig. 9.4 

e llipse: 

parabo la: 

hyperbo la: 

e = 1.2 

y 2= q(x-h) 

(x - h)2 y2 
~----:-.L + - = 1 

a2 b 2 

e = .25 

----c=.75 

c= l 

Show th a t the polar equat ion of Prob lem 4 ca n be tra nsfo rmed into the Ca rte ian 
eq uat ion of a n ellipse if 0 < e < 1; a parabola if e = 1; and a hyperbola if e > 1. 
Express the parameters h, a, b, or q, as approp ri ate, in terms of e a nd p . 

r = ep 
1 - e cos 8 

r = er cos 8 + ep 

If e = 1, th en r :=: er cos 8 + ep becomes r = r cos 8 + p. Since 

r cos e = x and r = V x 2 + y 2 , V x 2 + y 2 = X p. 

Squaring , 

Y 2 = 2p (x + 1)' 
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so 

h 
p -"2 and q = 2p. 

If e =1= 1, t he n r = er cos e + ep becomes 

Vx 2 + y 2 = ex + ep 

Dividin g by (1 - e2) and completi ng t he sq uare , we get the following: 

( pe2 )2 
x----2 2 

1- e + -Y- = l 

(~) 2 e2p 2 
1 - e2 1 - e2 

If 0 < e < 1 , the denominator of the y 2 term is positive , and we have an e llipse 
. pe 2 ep ep 

wIth h = --2' a = ---2' b = < ~2 . 
1 - e 1 - e v 1 - e" 

If e > 1, the denomin ator of the y 2 term is negat ive , so we may rewrite the 
equation as 

and we have a hype rbo la with 

pe2 ep 
h = -1--2' a = - 2--1' b - e e -

ep 

v?-=l' 
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PROBLEM 6. Recall that for an ellipse a2 
- b 2 = c2 and for a hyperbola a2 + b 2 = c2

, where , in 
both cases, c is the distance between the center of the conic and a focus a nd a is 
the length of the semim ajor axis. Show that the results of the preceding problem 
are consistent with this and that in both cases e = c / a. 

Solution: For the ellipse, 

PROBLEM 7. 

Solution: 

For the hyperbola , 

e 2 

c = -l!.., = ea. 
1 - e-

e 2p 
c = - 2--1 = ea. e -

We see that for an ellipse , 2 . c is the distance between the foci. Since e = c / a, if 
c = 0 we have e = 0; but if c = 0, the two foci coincide wit h the center and we 
have a circle rather than an ellipse. A circle can therefore be considered the co ni c 
section with eccentricity O. 

It is shown in the Appendix that the total energy E of a two-body gravitat io na l 
system and the eccentricity e of the orbit of the less massive body (mass m) with 
respect to the more massive body (mass M) are related by 

E = CMm(e 2 
- 1) 

2ep . 

Since it is virtually impossible in the real world for the total energy to have a 
value that would result in e = 0 or e = 1 exactly, orb its that are exact ly circles or 
exactly parabolas do not occur in nature. However , such orb its are of interest as 
limiting cases of actual trajectories. The energy equat ion of the Appendix , 

1 m v 2 _ CMm = E = CMm(e
2 

- 1) 
2 r 2~ ' 

provides the means to determine the velocity of an orb itin g body at a ny point in its 
orbit. 

Solve the energy equation for v, and then express the velocity at a ny point in an orbit 
in terms of G , M, r and a, if needed (where a is defined as in problem 5) , for each 
type of orbit. 

1 ? CMm CMm (e 2 
- 1) 

- m v - = -- + ---=-,---'-
2 r 2ep 

v 2 = CM (~ + e
2 

- 1 ) 
r ep 

I 
-.J 
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For an e llipse , 

e2 
- 1 

ep 
1 -- so 
a ' 

For a circle , r = consta nt = a 

(Recall th a t this was shown a t th e beginning of this chapter in the preliminary 
discussion of circular orbits.) 

For a parabola , e = 1, and 

For a hyperbo la, 

e2 
- 1 1 

--=- so th a t 
ep a' 

The minimum escape ve locity of a rocket-borne space probe is the parabo lic 

ve locity vp = V2GM /r . Velocities grea ter than this produce a hyperbolic orbit, 
and lesser velociti es produce an e lliptical orbit (or no orbit if too small). 

E lliptical o rbits are frequently a nalyzed in te rms of orbit parameters , such as 
apogee and perigee distances. These distances a re indicated in Fig . 9.5 by the let­
ters A and P respectively. Before we di scuss e lliptical orbits, it will be necessa ry 
for us to avo id ambiguity by clarifying o ur te rminology and mathematical notation . 
Most of us know from our read ing of space events th at in NASA news reports the 
point in an o rbit nearest th e surface of Earth is called th e perigee, whereas the 
farthest poi nt from the surface is called th e apogee. These points are indicated by 
C and 0 , respectively , in Fig. 9.5. In common usage the word is used to refer to 
e ithe r the position of the po int or the dista nce to the point. 

C+--~+-+--t-------+D 

Fig. 9.5 
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H owever , usage is no t uniform ; some references sta te tha t the di sta nces are 
measured, no t from the surface of E arth , but from the cente r. In this a rticle, we 
shall use di sta nces measured from the cente r. The di sta nces from th e center to 
the perigee a nd the apogee will be indicated by P a nd A , respect ive iy. In mos t 
discussions , the context will ma ke thi s clear. If in a ny si tuat ion co nfusion co uld 
result , th en distances fro m the surface, if used, will be ca lled perigee altitude or 
apogee altitude , whereas distances from the center wi ll be called perigee radius or 
apogee radius. Incide ntally , the mathe ma tics is si mpler when di sta nces are mea­
sured fro m the center. 

PROBLEM 8. a. Express the di sta nces A a nd P in terms of the semi major axis a a nd the eccen­
tricity e of an ellipse . 

Solution: From Fig. 9.5 , 

A = a + c = a + ea = a (1 + e) 

P = a - c = a - ea = a (1 - e). 

b. Express the eccentrici ty of an e lliptica l orbit in terms of A a nd P. 

Solution: The fo llowing relationships are a ppa rent from Fig. 9 .5: 

a nd 

a = ~ (A + P) , 

c = a - P = HA + P) - P = ~ (A - P) , 

e = £ = 4(A - P) 
a HA + P ) 

A - P 
e = A + P 

T his form ul a is a quick and easy way of findi ng the eccen tri city of a n ellipti ca l 
orbit. As a check , we note by in spectio n that e = 0 when A = P, which is th e 
condition fo r a circular orbit. 

PROBLEM 9. Derive formulas for VA and V p, the ve locities at apogee a nd perigee , in terms of A or 
P, respectively , a nd e of the ellipt ical trajectory. 

Solution: From Problem 7 , the velocity of a body in an elliptical o rbit at a distance r fro m the 
focus is 

If r = A = a (1 + e) , we can substitute 11a = (1 + e) IA a nd r = A to get 
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If r = P = a (1 - e) , by a similar substitution, 

V p = ~ GM (~ - 1 ; e) = ~C: (1 + e) . 

These equations can be written in other ways as well , because numerous ways of 
expressing relationships among e, C, a, A , and P are possible. The particular form 
for the formulas reflects personal preference . 

PROBLEM 10. Show that the velocities at apogee and perigee are inversely proportional to the 
distances from the center. 

Solution: If we divide the equation for v A by the equation for Vp (see Problem 9), we obtain 

VA _ -J(1 - e)P _ -Ja(l - e)P 
vp -(1 + e)A - a(l + e)A 

fP2 P 
= YPY = A . 

Thus the velocity at perigee is inversely proportional to P, and so on. That is , when 
the orbital distance from the center of the primary body is small , the velocity at 
that point is large ; when the distance is large , the orbital velocity is small. This 
result agrees with Kepler 's second law of planetary motion, which states that a 
planet moves about the Sun in such a way that the radius vector from Sun to planet 
sweeps out equal areas in equal times . 

PROBLEM 11. Derive a formula for the period of an elliptical orbit, given that the period of an 
elliptical orbit with semimajor axis a is the same as that for a circle with radius 
r = a. 

Solution: Following the method used in Problem 3, we express the velocity in terms of the 
distance around the orbit and the time p required to make one transit of the orbit 

Also 

Then 

2'1Tr 
V=-. 

P 

V = -JC:. 

2'1Tr 
p 

(2'1Tr)2 _ GM 
J;2 --r-
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fr3 
p = 27f"VCiM. . 

Because the period is the same when r = a, we may write 

r;;­
p = 27f"VCiM. . 

PROBLEM 12. An Earth sa tellite is placed in a n e lliptica l orbit with perigee a ltitude of 160 km a nd 
a pogee altitude of 16 000 km . Use 6380 km for the radius of Earth. 

a. If inj ec ti o n is a t perigee , what must be the injection ve locity? 

Solution: We first find the ecce ntricity as fo llows: 

p = 6380 + 160 = 6540 km o r 6 .54 X 106 m 

A = 6380 + 16000 = 22 380 km o r 2.24 x 107 m 

B y Probl e m 8, 

22 380 - 6540 15 840 
c = 22380 + 6540 = 28 920 = 0.55. 

B y Proble m 9, 

v = )3 .99 X 10
14 

(1.55) = 104\10.9456 
p 6.54 x 106 

= 9.72 X 103 mi s, or 3.50 X 103 km / h . 

b. Find the speed at apogee. 

Solution: By Proble m 9, 

v = )3.99 x 10
14

(1_ 055) = \11.78 x 107 x 045 
A 2.24 x l07 · . 

= 103v'8.Q2 ml s = 2.83 x 103 mi s, 

c. Find th e period in thi s orbit. 

Solution: From Proble m 8, 

a = 22380 + 6540 = 14460 km 
2 ' 

a nd , from Problem 11 , 

p = 27f 
(1.446 X 107) 3 

3.99 x I014 S 

= 17.2 X 103 s , o r 4.77 h . 

or 

o r 1.02 X 104 km / h. 

1.446 X 107 m , 
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PROBLEM 13. During th e Apollo flights , the Apollo spacecraft a nd the third stage (SlYB) o f the 
Saturn Y launch vehicle were placed in a pa rking orbit 190 km above E arth . Find 
the ve locity a nd period in this orbit. 

Solution: Beca use r = 6380 + 190 = 6570 km , or 6.57 x 106 m , we find fro m Pro ble m 7 , 

Vc = 1~.99 X 1~164 = 104Y O.6073 m/s = 7 .79 x 103 mis, V .57 X l 

From Pro bl em 11 , 

p = 27T (6.57 X 10
6
)3 = 5300 = 1. 47 h . 

3.99 x 1014 S S 

o r 2.8 X 104 km / h. 

PROBLEM 14. During the fl ight of Apollo 11 , th e SIYB stage was re ignited a nd burned long e no ugh 
to place the Apollo spacecraft o n a trajecto ry to the Moon. At th e e nd of the 
burn , the spacecra ft had a ve locity of a bo ut 3 .90 x 104 km per ho ur a t a n a ltitud e of 
336 km . Was the Apollo spacecraft give n escape ve locit y? 

Solution: Using the results of Probl em 7 , th e escape ve locity equ a ls 

~2GM I 2 (3 .99 X 10
14

) 
vp = - r- = V (6380 + 336) x 103 m/s 

= 104VlTs m/ s = 1.09 x 104 mis, o r 3.92 X 104 km / h. 

T hus the ve loci ty imparted was abo ut 200 km pe r ho ur less th an escape ve locity, 
the reby assuring a free re turn trajecto ry. Tha t is , if the majo r propulsio n sys te ms 
fa iled , th e spacecraft wo uld be going slowl y e no ugh to be pulled a ro und a nd o ri­
e nted back towa rd Earth by lunar grav ity, the attitude-co ntro l syste m be ing ade­
qu ate to ma ke needed co urse co rrectio ns. 

PROBLEM 15. A spacecraft , as illustrated in Fig. 9 .6 , is in a circul a r o rbit 800 km a bove Ea rth . The 
spacecraft must be transfe rred to a lowe r circul a r o rbit 160 km above Earth . 
Compute the ve locity cha nges needed a t A and P to achi eve thi s transfe r. 

A 

p 

Fig. 9.6 
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Solution: We fir st find the eccentricity of the transfe r o rbit , which is , of course, an e llipse , 
with A = 7180 km and P = 6540 km . 

7180 - 6540 640 
e = 7180 + 6540 = 13720 = 0.047 . 

We then co mpare the ve locitie a t A in the circul a r o rbit a nd th e e llipti ca l o rbit 
to find what changes must be made . Since GM has units m3/ s2

, we ex press A and P 
in mete rs . Fro m Prob le m 7 , 

.J3 .99 x 10
14 

Ve = 06 m/ s = 7.45 x 103 mI s , 
7. 18 x l 

o r 2.68 X 104 km / h , 

and fro m Pro bl e m 9 , 

.J3.99 X 10
14 

V A = 06 (1 - 0 .047) = 7.28 x 103 mis, 
7 .18 x 1 

o r 2.62 X 104 km/ h . 

The refore a propulsion e ngine on board th e spacecraft must be fired long 
e no ugh so th at a re tro thrust (opposite to the directio n of mo ti o n) will slow down 
the spacecraft by 600 km pe r ho ur. The spacecraft will th e n leave the 800-km 
circul a r o rbit and fol low the e lliptica l tra nsfe r orbit , re main ing in it indefinite ly 
unless additio nal changes in ve locity a re made. 

When the spacec raft reaches th e point P, howeve r , we wa nt it to move fro m th e 
e lliptical o rbit into the 160 km circul a r o rb it. T he refore we must use th e res ult s of 
Probl ems 7 and 9 to in vestiga te ve locity changes a t P . 

.J3.99 X 1014 

Ve = 6 .54 X 106 m/ s = 7.81 x 10
3 mi s, 

V = p 
3.99 X 10

14 
(1 047) = 799 X 103 I 

6.54 X 106 ' . m s , 

o r 2 .81 X 104 km/ h 

o r 2.88 X 104 km/ h. 

Th at is , a retro thrust must reduce ve locity aga in , thi s tim e by abo ut 700 km / h. 

This method of transfe rrin g a spacecraft from o ne o rbit to anothe r is known as a 
H o hma nn transfe r , named afte r Walte r Hohm ann , city e ngineer of Essen , Ge r­
many, who published the me thod in 1925. There a re ma ny pa th s th a t could be used 
to move the spacecraft fro m the 800 km to th e 160 km o rbit. But the H o hm ann­
transfer e llipse , requiring o nly two sho rt burns , is the mos t eco no mica l, takin g th e 
minimum amo unt of e nergy. The refore thi s me thod is ca lled a minimum-e ne rgy 
transfe r. It has many applica ti o ns. 
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PROBLEM 16. A sa te llite is pl aced into a synchro nous o rbit by a technique invo lvin g a H o hmann­
transfe r e llipse . We computed in Probl e m 3 th a t the a ltitude of such a sa te llite is 
abo ut 35 800 km and its orbita l speed is about 9370 km pe r ho ur. F ig . 9.7 suggests 
the details. 

Solution: 

A p 

Fig. 9.7 

We sha ll assum e that injection is a t the per igee point , which we sha ll pl ace 
160 km above Eart h . T he n o bvio usly 

P = 6380 + 160 = 6540 km , and 

A = 6380 + 35800 = 42180 km. 

We wish to find th e ve locity change needed at A. 

42180 - 6540 35640 
e = 42180 + 6540 = 48720 = 0 .732 

v = p 
13 .99 X 10

14 

(1.732) = 1 028 X 104 / 
\/6.54 X 106 . m s, 

or 3 .7 X 104 km / h 

V3 .99 
X 10

14 

(1 - 0 732) = 1 59 X 103 / 4.22 X 107 . . m s , 

or 5 .73 X 103 km / h . 

But the tangenti a l ve locity needed a t pa int A is 9370 km pe r ho ur. Therefore th e 
ve locity of th e satellite must be in creased in the direction of Ea rth 's rotation by 
9370 - 5730 = 3640 km per ho ur. This ex tra push or ki ck wou ld be provided by 
th e firing of a moto r on board the satellite , and the thrust a nd firing time must be 
such as to give the des ired increme nt in ve locity. Such a moto r to be fired at 
apogee is ca lled an apogee motor, and the thrust it prov ides is ca ll ed an 
apogee kick. 

The re la ti ve efficie ncy of usi ng this method is easy to understa nd . Pl acing a heavy 
fin a l stage of the launch vehicle a t the synchro nous a ltitude a nd then hav ing a 
burn to give the entire asse mbl y circu la r o rbita l ve locity wou ld ta ke mu ch fuel. 
Instead we sen d up to the synchro no us altitude o nly a relatively light sa te llite 
and a small apogee motor. T he numerica l va lu es used in thi prob le m a re me re ly 
illustrative . If the perigee a ltitude is hi gher o r lower than th e o ne we have 
assumed , a ll the o the r numbe rs a re changed. 
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One more mane uve r is needed to ma ke the sa te lli te synchro no us. It now has a 
pe riod equ al to the time of E arth 's ro ta tio n. Howeve r , the sa te llite wi ll appea r to 
be sta ti o nary over a given po in t o nly if it is in equa to ri a l o rbit. U nl ess co rrec tions 
we re made durin g launch , the pl ane of the o rbit wi ll be incl ined to the pl ane of 
the equ ato r. One method of so lving th is probl em is to fire a mo to r a t the precise 
instant when the sa te ll ite crosses the equ ato r , adjustin g the burn time a nd di rec­
tio n o f thru st so th at the vecto r sum of the burn ve locity and the o rbita l ve locity 
make the angle of incl inatio n eq ual to ze ro. 

PROBLEM 17. Th e fir st step in lun ar o rbit injecti on in the A pollo 11 fli ght was to place the 
spacecraft in an e llipti ca l o rbit of 110 by 313 km , the low po int-or peri lune 
(co rrespo nding to pe rigee for E art h)-be ing o n the back side of the Moo n . 

a. Co mpute th e ve locity needed a t pe ri lune to inj ect the Apollo spacecraft in to 
this o rbit . 

Solution: Us ing the da ta develo ped fo r lun ar o rbits in Probl em 2 , 

Solution: 

P = 1740 + 110 = 1850 km 

A = 1740 + 314 = 2054 km 

2054 - 1850 204 
e = 2054 + 1850 = 3904 = 0.052 

v = p V~.·~5 ~ 1~~: (1. 052) = 103V2.73 = 1. 65 X 103 mi s, 

o r 5 .95 x 103 km / h . 

b. Find th e pe riod in this orbit. 

1 
Evide ntl y a = 2: (2054 + 1850) km , o r 1. 95 x 106 m 

a nd 

(1.95 x 106? , 
4 .8 x 1012 s = 2'TT (1. 24) x 10- s = 782 s , o r 130 m 

PROBLEM 18. Th e lunar modul e desce nt o rbit inse rti o n duri ng the A pollo 11 mi ss io n began with a 
H ohma nn transfe r. Th e comm and and se rvice (CSM) a nd lu nar modul es we re in 
a circul a r o rbit 110 km above the Moo n. T he lu na r modu le was de tache d and its 
descent engine was fired to reduce ve locity so th at it wo u ld e nte r a 110-by-15- km 
lun ar o rbit. Find the reduct ion in ve loci ty needed to achieve this o rbit . Th e CS M 
re mained in the 110 km parking o rbit. 

Solution: In thi s case , the change to th e e ll ipt ica l transfe r o rb it was made a t apo lun e (co rre­
spo ndin g to apogee fo r Ea rth ). 

A = 1740 + 110 = 1850 km or 1.85 x 106 m 

P = 1750 + 15 = 1755 km o r 1.755 x 106 m 
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Fig. 9.8 

1850 - 1755 95 
e = 1850 + 1755 = 3605 = 0 .026 

~;.·:tx l~~: (1 - 0.026) = 103\ /2.526 = 1.59 X 103 mis, 
o r 5700 km/ h. 

\--~-~- llOkm 

",""<---1-- IS km 

We found in Pro ble m 2 th at the circula r ve locity in th e 110-km orb it was 5800 km 
pe r hour. Thus the reductio n in the ve locity needed , achieved by a retrob urn of 
the lunar module descent engin e , was 100 km pe r ho ur. A t perilun e a ltitude of 
15 km , severa l retro burns and attitude changes were made-bo th auto matica lly, 
and manua lly by the pil o t-causing th e spacecraft to descend to th e surface. If for 
any reason the descent fro m the 15-km pe rilune co uld not be made, the lun a r 
module co uld have remaine d indefinit e ly in the e llip tical t ransfer o rbit until a 
re ndezvous and docking with the CSM could be made. T hu s this mane uve r , 
which seemed so tr icky and dangero us as we watched before o ur te lev isio n se ts, 
was actu a lly a routine H ohm ann transfer. The t ricky maneuver , requ iring so me 
manual co ntro l, came whe n the powe red desce nt to the lun ar surface was made 
fro m the 15-km a ltitude. 

We will co nclude o ur discuss io n of o rbits by consid ering th e class ic analysis 
known as Ke ple r 's Proble m , which in modern times ma kes use of hi gh-speed co m­
pute rs to produce fina l results. It is the task of de te rmin ing t he exact posi t ion of 
a body in an ell ipti ca l orbit a t any given time. Keple r , of co urse , was inte res ted in 
establishing the nature of the pl ane tary o rbit s a ro und the Sun , but today the 
same analys is is used to pre d ict the loca ti o n of a rti ficia l satellites in thei r orb its 
a ro und Ea rth . 

We sha ll make use of a num ber of th e re latio nships in vo lvi ng e lli pti ca l o rbits 
a lreadye tabli hed . For the orb it illustrated in Figure 9.9 , 

ep a(l - e2) 

r = 1 - e cos e 1 - e cos e 

FP = p 

CP = CA = a 

CF = ae, 

151 



Chapter Nine 

152 

where F is one focu of the e llipse and the location of the primary body in th e 
gravi tational system ; A , P , C are apogee, perigee , and center of the ellipse, 
respectively ; and e is the eccentricity of the e llipse. 

Kepl er's. Problem is stated in terms of th~angle II (ca lled the true anomaly of the 
elli~~~tween the Earth-perigee ray (FP) and the rad ius vecto r (FS) , rather 

. th an the angle e, as shown in Fig. 9.9 . Since II is the suppl e me nt of e, the e llipse 
equ atio n may be written in terms of II as 

a (1 - e2
) 

r = 
1 + e cos II . 

R ecall also that the rate at which the radius vector traces o ut the el lipse is not 
constant , but is in accordance with Kepler 's first law: The radius vector sweeps o ut 
eq ual areas in eq ual time. This makes the task of express ing r and II directl y in 
terms of time extremely difficult. Kepler circumvented the proble m by co nside ring 
the projection of the ellipse on an " auxi li ary circle" hav in g the same center and 
passing thro ugh P a nd A as shown in Fig. 9.10. If a sa tellite is at S on the e ll ipse 
<!!!d Q is the foot of the perpendicular from S to AP , then S ' is the inte rsecti on of 
QS with the circle . Kepler defined three new quantities: the fores horte ning fac tor 
k = SQ / S'Q ; the eccent ri c anomaly E = L S'CP ; and the mean anomal y M , 
which is a fict itious angle through which an object would move at a uniform angu­
lar speed with respect to F. That is , M = (tot / T) . 2TI radians , where T is the tim e 
for o ne complete orbit and tor is the time of interest. H e then estab li shed the 
fo llowing relationships: 

(1) 

(2) 

(3) 

(4) 

r = a (1 - e cos E) 

tan ~ = )1 + e tan E. 
2 1 - e 2 

M = E - e sin E 

These will be derived in Problem 20 . 

S' 

S(r ,6) 

A 
P+---,~~_--',--+ _ ___ ~A 

c 

Fig. 9.9 Fig. 9.10 
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QRIQINAL PAO! IS 
0' POCHI QUALITY 

In order to determine a satellite's position at any time , we must be able to compute 
r and v. Since in general , e and T (and therefore M) are known for an orbit , if 
equ ati o n (4) can be solved for E, then (2) and (3) will provide rand v. But equa­
tion (4) is transcendental in E, so tha t no analyt ica l so lutio n is possible . This 
difficulty has been the core of many computational schem.~s gene rated by ast rono­
mers , mathematicians , and physicists. 

High-speed computers now make a numerical , iterative solutio n both possible 
and feas ible . The iterations wo uld proceed as fo llows: 

Ek + I = M + e sin Ek 

The iteration continues as long as necessary to co mpute E to a desired accuracy 
(say 10- 12 or 10- 16

) ; in other words , when IEk + I - Ekl < 10- 12
, we can use 

E = Ek + I , if th is is o ur desired level of accuracy . Since EK + I - Ek = 
e (si n Ek - sin Ek _ I) ' it can be shown that IEk + I - Ekl :5 ek 

- 1M , so that the 
sequence Ek converges to the new val ue of E, since e < 1. This process is highl y 
efficient for small va lues of e, and afte r a few iterations , it is usua ll y found th at 
the difference is within tolera nce . 

PROBLEM 19. a. Write a computer progream to perform the itera ti o n o utlined above , and then to 
use the va lue of E so fou nd to comp ute r and v, where E is fo und to an accuracy 
of 10- 12 

JLI ST 

10 REM ORBIT POSITION PROGRAM 
20 REM Q ECCENTRICIT Y OF ORBI 

T 
30 REM A SEMIMAJOR AXIS OF OR 

BIT 
ao REM P PERIOD OF ORBIT 
50 REM T TIME OF POSITION DET 

ERMINATIoN 
100 PRINT "WHAT IS THE ECCENTRIC 

ITY OF THE ORBIT?": INPUT Q 
110 PRINT "WHAT I S THE SEMIMAJOR 

AXIS LENGTH, " : PRINT" IN 
KILOMETERS ? " : INPUT A 

12 0 PRINT "WHAT IS THE PERIOD OF 
THE ORBIT, " . PRINT" IN HO 

URS? " : INPUT P 
13 0 PRINT " HOW MAN Y HOURS AFTER 

PERIGEE IS THE " 
la o PRINT " POSITION TO BE DETERM 

INED?": INP UT T 
150 M ; 2 * 3, 1 a 1 6 * T I P 
160 E 1 ; 0 
17 0 FOR J 1 TO 20 
18 0 E2 ; M + Q * SIN ( El ) 

18 0 IF ABS (E2 - El) < 10 ' ( 
12 ) THEN 22 0 

200 E 1 ; E2 
2 10 NE XT J 
215 PRINT " DESIRED ACCURACY NOT 

OBTAINED AFTER" : PRINT "20 I 
TERATIONS" 

220 PRINT J ; " ITERATIONS WERE RE 
QUIRED TO" : PRINT "ACH IE lj E 0 
ESIRED ACC URAC Y," 

225 PRINT : PRINT 
23 0 E ; E2 
2 QO R ; A * ( 1 - Q * COS ( E )) 
2a5 RI. ; R: R ; RI. 
25 0 W; SQR « 1 Q) I ( 1 - Q)) * 

TAN ( E I 2 ) 
26 0 NU; 2 * ATN (W ) 
265 NU'! ; 100 * ( NU + 0 ,005): NU ; 

NU 'X I 100 
270 PRINT" THE SATELLI TE IS " ; R 

; " KM" : PRINT" DISTANT FROM 
EARTH," 

28 0 PRINT " AND ITS ANOMALY IS 
" ; NU; " RADIANS . " 

28 0 END 
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Solution: 

b. Use this program to find the position of the satellite di scussed in Problem 12 
one hour after it passes the perigee point in its orbit. 

1 1 
We had e = 0.55, a = 2(A + P) = 2(22 380 + 6540) km = 1.45 x 104 km , a nd 

T = 4 .77 h. Running the program of part (a) with these values produces the 
following results: 

JRUN 
WHAT IS THE ECCENTRICITY OF THE ORBIT? 
" 0 .55 
WHAT IS THE SEMIMAJOR AXIS LENGTH. 

IN KILOMETERS" 
?111500 
WHAT IS THE PERIOD OF THE ORBIT. 

IN HOURS? 
? 1I . 77 
HOW MAN Y HOURS AFTER PERIGEE IS THE 
POSITION TO BE DETERMINED" 
"1 
12 ITERATIONS WERE REOUIRED TO 
ACHIEVE DESIRED ACCURACY. 

THE SATELLITE IS 16670 KM 
DISTANT FROM EARTH. 
AND ITS ANOMALY IS 2.37 RADIANS. 

PROBLEM 20. The four relationships of Kepler 's Problem can be estab li shed using the geo met ry 
a nd trigonometry of Fig. 9.10. 

Solution: k was defined as k = SO / S' O. From Fig. 9.10 , we have 

so = r sin v, 

and 

= V a2 - (ae + rcos v)2 . 

The n 

k 
rsin v I r2(1 - cos2v) 

V a2 - (ae + rcos vY = Va 2 
- (ae + r cos V) 2 ' 

a (1 - e2
) . .. 

Substituting r = 1 + and SImp li fy Ing produces , after some labor , the result 
e cos v 

k =~. 

b. If a rectangular coordinate system is placed o n Fig. 9 .10 with or igin at F a nd 
positive x-axis a long the polar axis , express the rectangular coord in a tes of Sin 
term of E, a, and e. Then use the fact that S can a lso be given by (- r cos v, r sin v) 
to how that r = a (1 - e cos E). 
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Solution: Since CF = ae and S'C = a, the x-coordin ate of Sis QF = CF - CQ = ae - a cos E. 
The y-coo rdinate is 

SQ = k S'Q 

= ~(asin E) . 

So the coordinates of S are (ae - a cos E, ~ a sin E). 

= (ae - a cos E? + (~a sin E? 

= a2 (1- 2ecosE + e2 cos2 E ) 

So r = a (1 - e cos E). 

c. Use (b) and the identity 

tan ~ = h - cos e 
2 -VI + cos e 

to show that 

v ~+e E tan- = --tan- . 
2 1 - e 2 

Solution: Since r = a (1 - e cos E) and - r cos v = a (e - cos E) , 

Then 

and 

Then 

cos E - e 
cos v = 1 - e cos E . 

1 - e cos E - cos E + e (1 + e) (1 - cos E) 1 - cos v = = -'--_---L~ ___ --'-
1 - e cos E 1 - e cos E ' 

1 - e cos E + cos E - e (1 - e) (1 + cos E) 
1 + cos v = = . 

1 - e cos E 1 - e cos E 

tan ~ = h - cos v = ~1 + e /1 - cos E = ~1 + e tan E: . 
2 -V 1 + cos v 1 - e -V 1 + cos E 1 - e 2 
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d. As the sa te llite moves in its o rbit so th at the rad ius vecto r sweeps o ut eq ua l 
a reas of the e llipse in eq ua l times , FS ' sweeps out equ a l a reas of t he a uxili a ry 
circle in eq ua l time. If the a rea e ncl osed by FP , FS' , a nd th e a rc S' P is swept o ut in 
time D.{ , a nd T is th e tim e for the satellite to traverse the e ntire e llipse , th en this 
a rea is give n by t.t I T (na l

). R eca ll that M is (t.t I T) (2n) , a nd use the geo metry of 
Fig. 9.10 to show th at M = E - e sin E . 

A rea FPS ' = a rea of sector CSP ' - area of CFS ' 

D.{ ? 1 1 1 ( ) ( . ) - na - = - a E - - ae a sin E 
T 2 2 

2n ~ = E - e sin E 

M = E - e sin E 

A mong the f irst telescope used to exp lore the heave ns were those based o n the 
reflec ti ve properties of paraboloidal mirro rs. It is the fac t th at a ll light striking 
such a mirror in th e direction parallel to the ax is of the paraboloid is reflected to 
th e foc us th at provides th e li ght-ga the rin g capacity of the te lescope. The re fl ec­
tive properties of e llipsoid a l a nd hype rbo lo id a l sur face are a lso impo rtant. In 
both ca es , light striking the su rface in a directio n towa rd o r away from o ne foc us 
is reflec ted in a direction e ith er away from o r towa rd the o th e r focus. These prop­
e rti es are illus tra ted in Fig. 9.11. 

fig. 9. 11 

(c) 

ellipse 

I 

~ 

(a) 

I 
I , 

(b) 

parabola 

(d) ( e) 
hyperbola 
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PROBLEM 21. Th e technique of ray tracing is used in the des ign of o ptica l instrume nts . One class of 
such instrume nts owes its foc using prope rti es to th e law of refl ecti o n . Thi s law 
states tha t the angle be tween the incide nt ray and the refl ecting surface must equ a l 
th e a ngle be tween the eme rgent ray and the re fl ecting surface. In ray tracing, 
eq ua ti o ns a re writte n fo r the lines co nta ining incident and e me rgent rays of e lec­
t romagne tic radi ati on . Use thi s techniqu e to prove the refl ective prope rty of the 
pa rabo la , given th a t the slo pe of the ta nge nt a t the po int (xo, Yo) o n the pa ra bo la 
y 2 = 4px is 2p /Yo' (The slope of the tangent at any po int o n a conic sectio n graph 
will be de ri ved in C hapte r 10 .) 

Solution: We must show th at an incide nt ray pa ralle l to the ax is is refl ected thro ugh the focus. 
T he geo metry of the refl ectio n is shown in Fig. 9. 12; sin ce the lines TI and PF 
a re pa ra lle l, and sin ce the a ngle of incide nce equ a ls the angle of re fl ecti o n , we 
have th a t tri angle FTP is i osceles and so ¢ = 28. The equ a tio n of the line co n­
taining the incide nt ray is y = Yo. Th e equ atio n of th e lin e co nta ining the re fl ected 
ray is (y - Yo) = tan ¢ (x - xo) = tan 28 (x - xo). 

p 

Fig. 9. 12 

Sin ce 

2 tan 8 2p 
tan 28 = ? and tan 8 = - , 

1 - tan-8 Yo 

4P/ ( 4p 2) 4pyo tan 28 = - 1 - - 2 = 2 4 2 ' 
Yo Yo Yo - P 

Bu t 

yJ = 4pxo 

so 

4pyo 
tan 28 = 4 4 2 pXo - P 

=~ 
Xo - P 
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Substitutin g th e slope into t he equ atio n of the lin e, 

Yo 
y - Yo = Xo _ P (x - xo) 

Yo (x - xo) 
y = + Yo· 

Xo - P 

If x = p , y = 0 , so thi s lin e passes thro ugh th e focus . 

Specia l instrume nts have been designed to study the e lectromagne tic radiation of 
sta rs and other as tro nomi ca l so urces in wavelengths outside the visible region. If 
X-rays a re to be re fl ec ted , t he in co ming rays must form a ve ry sma ll a ngle (g raz in g 
angle) wi th respect to the re fl ecting surface ; otherw ise the X-rays a re simpl y 
abso rbed . Howeve r , with graz in g ang le incidence , inco min g rays that are not par­
a lle l to th e ax is are not foc used a t a ll (mak in g it imposs ible to fo rm an image of a 
source th at is no t a po int) un less an eve n number of re fl ectio ns is used . The X-ray 
te lescope o n the H igh Energy Astronomy Observatory (HEAO) sa te llite was 
th e refo re designed to use two reflec ti o ns from co ni c section surfaces. Fig. 9.13 
shows so me of the possibilities th at were conside red. Notice th at in each , the 
foc us of the pa rabo lo id coi ncides wi th o ne foc us of the ot her co nic. 

Fig. 9.13 

re fl ecting surfaces~// 
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PROBLEM 22. In designing an X-ray te lescope th at uses hype rbo lo ida l and paraboloida l reflecting 
surfaces , the most effective p lacement of the x- and y-axes is such that the x -axis 
co incides with the axis of the parabolo id and the y-ax is passes through the in te r­
section of the two surfaces. T his is illustrated in Fig . 9.14 in cross sectio n . (Note 
that fi gures 9.14 thru 9.17 a re distorted: grazing angles are much smalle r than shown 
in these diagrams.) 

-----------
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Conic Sections 

a. If p is the di sta nce between the ve rtex and focus of the parabola in F ig . 9 .14 ; c, 
the distance between the cente r of the hyperbo la and each of its foci ; h, the 
distance between th e cente r of the hyperbol a and each of its ve rti ces; and k, the 
distance be tween the cente r of the hype rbo la and the origin , find the equa tio ns 
of the two co nic secti o ns in this coo rdin a te sys tem . 

Solution: Fo r th e pa rabo la , the ve rtex is at (- ( p + c + k ), 0) and the focu -ve rtex dista nce is 
p , so the eq ua tio n is 

y ~ = 4p (x + p + c + k ), 

For th e hype rbo la , the cente r is a t (- k, 0); th e ro le of the pa ra me te r a in the 
standard eq uation is ta ke n by h a nd th a t of th e pa ramete r b by V c 2 

- h 2
, so th e 

equ atio n is 

1. 

b. F ig. 9.15 shows the ray pa ths , whi ch fo rm a ngles ll' and (3 with respect to th e 
x -axis, and the ta nge nts to th e pa rabo la a nd hype rbo la , which fo rm a ngles fJ a nd ¢ 
res pect ive ly, with res pect to th e x-axis. Expe rie nce in this fi e ld has shown that 
when success ive reflectio ns ta ke pl ace , surface refl ecti o n effi cie ncy is maximum 
when an incomi ng ray pa ra lle l to the axis strikes each reflecting surface a t abo ut 
the same angle. Show th at thi s co nditi o n , toge the r with the fact th a t the angle of 
incide nce equ als the angle of reflectio n , means th a t (3 = 2B, ¢ = 3fJ, ll' = 4fJ. 

r-- F--1 
Fig. 9.15 
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Solution: We number the angles 1, 2 , 3 , 4, 5 in F ig. 9. 15 , as shown in Fig. 9.16. 

Fig. 9.16 

We see that 

So 

~ hypeTbOl a 

/' - ---
/' 

I--F-----1 

L 1 = L 2 and L 3 = L 5 (L of inci dence = L of reflectio n) ; 

L3 = L 4 ( ve rti cal angles); 

L 1 = e (inco ming ray is para lle l to ax is); 

L2 = L 3 (fo r maximum reflecti o n efficie ncy). 

L 1 = L 2 = L3 = L 4 = L 5 = e. 
Now, since an ex terio r angle of a tri angle is equal to the sum of the no nadjace nt 
inte rior angles , 

{3 = 28; 

cp = {3 + 8 = 38; 

a = cp + 8 = 48. 

c. In designing the surface of the X-ray te lescope , th e des igne r must be abl e to 
express the parameters p , c, k , and h of part (a) in te rms of two initia l des ign 
parameters F and Yo of th e instrument , whe re F is th e distance a lo ng the x -ax is 
between the origin and th e focus of the hyperbo la , and Yo is th e di stance along 
the y -axis be tween the origin and the po int of inte rsectio n to the parabo la and 
hype rbo la. (These are shown in Fig . 9.15 .) 

Recall th at under graz ing-a ngle incidence , e is a ve ry small angle (thi s is defi­
nite ly no t shown in the figure ; the angle occurs where these lines fi nally inte rsect). 
It is a lso true in this situ atio n that p is small compared to F. Show that the 
parameters p , c, k , and h can be given , at least approx im ate ly, in te rms of F and Yo 
by the fo llowing 

1 c = - F 
2 
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Solution: Let (Xl, Yl) be the point on the hyperbola where the second reflection takes place , and 
let (0, h) be the y-intercept of the line containing the ray after the second reflec-
tion . (See Figure 9.17 .) Then tan a = hi F and tan (3 = y1/(e + k) = y 1/(2e + F) , 
since F = k - e. Because e is such a small angle, a a nd {3 are also sma ll. This 
suggests the following approxima tions: 

Fig. 9.17 

Y2 ='= Yo ='= Yl; tan Q == Q; tan {3 == {3. 

f---F--j 
f---- k ----; 

~ p +-- c -t-- c ---1 

(0, y,) 

T 
Yo 

(Fig. 9 .17 does not show this because the angles are not small e no ugh . The reader is 
encouraged to imagine how the figure would change if ang les e, ~ , <\>, and (X shrink. ) 

Since (X = 2{3, we get 

and if Y2 == Yl, the n 

So 

Y2 ~~ 
F 2e + F' 

2F == 2e + F, or F == 2e. 

. 1 F 
e = 2: ' and k=F +e== ~F. 

The parabo la has eq uation y 2 = 4p (x + P + e + k). Since Y = Yo when X = 0 , and 
since e + k == 2F, 

Yo2 ='= 4p (p + 2F) = 4p 2 + 8Fp. 
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If pi mall co mpa red to F, the te rm in p 2 may be neglected givin g p == YI?i ( F); 
h ca n be expressed exac tl y in te rms of p, c, a nd k by o bse rving th a t (0 , Yo) is o n 
bo th th e pa ra bo la a nd th e hype rbo la . T hi s mea ns th a t 

YI? = 4p (p + c + k ) 

a nd 

1. 

The n 

? 0 ?) (k 2 ) ( , ) YII- = (c- - h - h 2 - 1 = 4p IjJ + C + k ; 

so 

or 

U sing the qu adrati c fo rmul a , 

Th e pos itive sign befo re th e radi ca l is di sca rded , sin ce it produ ces a ph ys ica ll y 
unrea li stic va lue of h la rge r th a n c, so 

This a nalysis produces a n initi a l set of p a rame te rs p , c, k, a nd h. A ray-trac in g 
compute r prog ra m , based o n th e principl es di scussed in Prob le m 21 , is th e n used 
to check the actu a l foc us ing ca pa biliti es of a hypo th e ti ca l instrume nt with these 
specifica tio ns . The use of th e co mpute r with uch a progra m ma kes it poss ibl e to 

refin e the valu es of th e pa ra mete rs fo r bes t foc us unde r des ired co ndi t io ns. Ac tu al 
pre pa ra tion o f th e re fl ec ting surface is a lso co ntro ll ed by co mpute r-d rive n 
machin e!'y o nce t he o ptim a l va lues of th e pa ra me te rs a re es tab li shed . 



CHAPTER TEN CALCULUS 

RECEDlNG PAGE BLANK NOT FILMED 

l ~ ') 1 \lv'~ 

Photograph of an active volcanic eruption on 
Jupiter's satellite 10 taken on March 4, 1979, 
by Voyager 1. 
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Altho ugh calculu is used ex tensively in space scie nce a nd technology , we sha ll 
consider in this chapter just a few problems, most of which extend or 
ampli fy ideas discussed in previous chap ters. Ca lculus is also used in the 

Appendix. 

PROBLEM 1. Until recently it was accepted that there were three possible sta tes in which mat ter 
could exist: sol id , liquid , and gas . Under conditions that norm all y prevail on 
Earth, these are the only states in which matter is fo und . However , it is now known 
that if the temperature is very high or the density is ve ry low , a fourt h state of 
matter can ex ist ; it is called p lasma. A plasma consists of e lectrons and positively 
charged io ns rather th an neutral ato ms, and so it has both e lectr ic and magne tic 
fields. (An ion is an a tom that has lost one or more of its e lectro ns.) On Earth , 
plasmas exist, at least temporarily , in lightning , e lectrical parks , fluorescent 
la mps, and in th e ionosphere. 

]n addition to the e lec tromagnetic radiation we sense as heat and li ght , it is now 
known that the Sun emits particle radiation having a wide range of e ne rgies. The 
pa rticles (or p lasma) appea r to come from specific regions o n the Sun , some as 
highl y energet ic particles which move radially outward into inte rplanetary space. 
Some of these highly energet ic particles that reach Ea rth 's io nosp here produce 
auroral disp lays (the northern lights) and affect sho rtwave radio transmission by 
modifying the ionospheric structure . 

A lower energy componen t of the particles is em itted from the Sun o n a co ntinu o us 
basi ,and these lower energy particles a lso move away from the Sun in a st ra ight 
lin e (rad ia ll y) . The study of this inte rpl aneta ry plasma, wh ich has been ca ll ed the 
so lar wind , is of great concern to a tronomers and othe r scientists for several 
reason. One is th a t the Sun is the on ly sta r we are close to , and th e emission of 
plasma means that it is very gradual ly los in g matter , an important factor in ste ll ar 
evo lution. Another is that the plasma sta te of mat te r is diffi cult to st udy on Ea rth 
because it is hard to reprod uce in the laboratory the co nditi ons of high te mpe ra­
ture and low density that exist natura ll y in the sola r atmosph e re and in inte rplane­
tary space. 

A number of space probes and satel lites have been used to in vestigate th e prop­
e rti es of the interplanetary plasma. The Interplanetary Monitoring Platform (IMP) 
se ri es of probes from 1963 to the pre ent , the Orbiting Geophysical Observatory 
(OGO) series from 1964 to 1974 , the International Sun-Earth Explorer (ISEE) 
sa te llit es from 1977 to th e present , and the Mariner , Pioneer , and Voyager deep­
space probes have al l ca rried exper ime nts resulting in a series of measurements of 
flow direction , den. ity , ve locity , and electric a nd magnet ic fie lds of th e 
so lar wind. 

It has been postu lated, on theoretical gro unds, that th e magn e tic field lin es of th e 
so lar wind co in cide with the locus of particles emi tted from the Sun , and th e 
experimental findi ngs to date seem to suppor t this hypothesis. 

a. Determine the shape of this locus , given that the so la r atmosphe re f rom which 
em iss ion takes place rotates a t a constan t angu lar veloc ity and that pa rticles 
move o utward with constant ve locity in the radial direction . Assume the direction 
of rotat ion is clockwise . 
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Solution: An intuitive solutio n using " time lapse" pola r graphing is di splayed in Fig . 10.1 , and 
this shows that the locus is an Archimedean spira l. T his can be veri fied analyti­
ca ll y using calculus. We are seeking r = f( e) such that dr I dt = V (particles emitted 
with co nstant rad ia l ve loci ty) , and de Idt = C (emi ssive origin is rotating with 
constant angul a r velocity). From the chai n rule , 

dr dr de 
dt de dt ' 

and substituting from above , we have 

V = ~ C 
de ' 

a consta nt we may ca ll k. 

or ~ = .!:: 
de C ' 

Integrating a nd choosing th e coordinate system so tha t f(O) = 0 , we have r = k8, 
which is the eq uatio n of an Archimedean spira l. 

Fig. 10.1 
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b. It has been o bserved th a t th e equ a to ri a l reg io n of the sola r a tmosph e re ro ta tes 
at a rate of C == 2.94 X 10- 6 radi ans pe r second with respect to th e d ista nt sta rs . 
This is known as the sidereal rotation rate and i equi va le nt to a side real rota ti o n 
pe rio d of 

21T _ 06 _ 
2.94 X 10-6 s - 2.14 x Is - 24.7 days . 

Spacecraft measure ments of the solar win d ve locity show tim e va ri a ti o ns , with 
ve locity pea ks a t approxim ate ly 25-day inte rva ls as we ll. For exa mple, Marin er 2 
measured ve lociti es va ryin g fro m 400 km / s to about 750 km / s a t so me pea ks. 
D e te rmin e k and plo t the graphs of the A rchim edea n spira ls fo r ve lociti es o f 
400 km / s and 750 km / s. 

Fo r V = 400 km / s , 

_ V _ 400 _ X 8 
k - C - 2.94 x 10 6 - ].4 10 km /rad. 

For V = 750 km / s , 

k - 750 - 6 x 08 k / - 2 .94 X 10-6 - 2. 1 m rad. 

T he graphs of r = ke a re shown in F ig. 10.2. (Note th at it is the practice to use 
km / rad as the unit fo r k , b ut thi s is equi va le nt to km , since the radi an is 
dime nsio nless.) 

To 

12 

~+-~-+-1--~Y-~-+~~ 0 

Fig. 10.2 

(a): V = 400 
km/sec 

(b): V = 750 
km/sec 

In C hapters 4 and 7 , we co nsidered some of the correctio ns needed to produce 
un distorted pi ctu res of spacecraft observations . Here is anothe r such correctio n . 
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PROBLEM 2. Most satellite photography makes use of scanning techniques. This is illustra ted in 
Fig. 1O.3(a), where the scanning is done in the direction orthogonal to the flight 
path. In performing the scan, a system of mirrors and le nses rotates around an ax is 
parallel to the flight path. A ltho ugh the scanning system rotates at a constant 
rate , we can see from Fig. 10.3(b) that the rate at which th e scanning beam moves 
a long the ground depends on th e angle it makes with the verti cal. 

Scan 

(a) 
Fig. 10 .3 

Scan Mirror 

Multispectral 
Scanner 
(MSS) 

~ 
I 

(b) 

.6B, = .6B2 

.6x, * .6x, 

If we imagin e that a square on the gro und has the pattern shown in Fig. 10.4(a) , 
the result of this variable Earth-scan rate will be the distorted pattern shown in 
Fig. 10 .4(b). In o rder to produce an undistorted picture , the actual recording of 
the im ages must be done at the Earth-scan rate rather than the rotation rate. 
Th is panoramic distortion correction requires the ab ility to express th e sca n rate 
a lo ng the grou nd , dx / dt in terms of the sate llite he ight , h, the angle e, a nd the 
rotation rate , de / dt, of the scanning system, where e, h, and x are as defined in 
Fig. 10.3(b). Fi nd such an express ion. 

1\ ~ - Flagpoles 

\ V 
'-... ~ / 
V "\ ~ 

IV 1\ 
/ 1\ 

(a) (b) 

Fig. 10.4 
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Solution: (This is a stra ightfo rward re la ted rate p rob le m.) Fro m Fig. 10.3(b), we see th a t 
x 

tan 8 = h ' so th at x = h ta n 8. Diffe re nti a ting with respect to time , 

PROBLEM 3. In Proble m 9a of Chapter 4, we es timated the surface a rea of an a nte nna " dish" by 
trea ting it as tho ugh it were a fl a t circle . In actua l practice , such an ante nn a is a 
parabo lo id al " cap" whose depth is fro m 10 pe rcent to 20 perce nt of its radius. Let 
us see how good this es tim ate was . 

a. Find an express ion fo r th e surface a rea of a pa rabo lo idal cap th at is bo unded 
by a circl e o f radius r and has depth a. 

Solution: We can consider the parabo loidal cap to be genera ted by revolving the illustrated 
po rtio n of the parabo lic curve (F ig. 10.5) aro und th e x -ax is . We must first de te r­
mine the functio n y = f(x) fo r this curve. The n the surface a rea will be given 
by the integral 

s = 2-rr r f(x) \ 1I + [f'(x)f dx 
o 

Since thi s curve is a parabo la with axis horizontal, 0!jnin g to th e left , a nd 
with ve rtex a t (a,O) , its equati o n has the fo rm y = b a - x, whe re b must be 
de termined so tha t (O ,r) sa ti sfies the equation . T his mea ns r = b~, o r 
b = r Iva. The functio n we need , then , is f(x) = (r lVa)~ = r\1I - x l a. 

y 

x 

o 

Fig. 10.5 

The n 

f ' (x ) = r x (-~ ) = _-;=-= r=== 
~ 2Y a2 -ax 

2\j1-; 

S = 2-rrJa r 11 - ~ 11 + 2 r2 dx 
o \j a \j 4a - 4ax 
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This integral may be eva lu ated by the substitu tion u = r 2 + 4a 2 
- 4ax to prod uce 

S = 2-rr - v udu = - _U 3/2 J,2 + 402 r , I -rrr [2 ] ,2 + 402 

,2 8a 2 4a 2 3 ,2 

b. Reca ll th at the paraboloidal cap had a radius of 10 me te rs . If it s depth was 1 m , 
find its surface a rea (assuming exact numbers) a nd th en find the relative e rror of 
the es tim ate made in C hapte r 4. 

Solution: For r = 10 m and a = 1 m , 

The es tim a te, approx im ating the parabo loida l ca p as a circle, was 

317 - 314 
r. e . = 317 = 0.0098 , or a bo ut 1 pe rcent. 

c. Find th e re lat ive e rror for a depth of 2 m . 

Solution: 

error = 1326 - 3141 m2 = 12 m2 

12 . 3 8 r.e. = 326 = . percent 

PROBLEM 4. In Prob lem 11 of Ch apter 7 , we observed that a spacecraft a t a di sta nce h from Earth 
can observe o nl y a portion of Earth 's surface. 

a. D er ive a formula fo r finding the fractio n of the o bservab le area as a function 
of he ight above Earth 's surface. 

Solution: The portion of Ea rth 's surface vi ibl e from the spacecraft is show n shaded in 
F ig. 10 .6. Let A z be the area of the zone with a ltitude BE . If we set up a 
rectangular coo rdin a te system with or igin at A, a nd if the coo rdinates of a point on 
th e a rc EC are (g(y), y) , th e n thi s surface a rea is fo und by eva lua ti ng the in tegral 

A , = 2-rr FE g( y )"Y l + [g'(y)f dy 
\ a 

where g( y) = x = Y R2 - y2 a nd YB a nd YE are th e y -coord in a tes , respective ly , 
of the points Band E . 
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o 

R B 
c 

1 R 

A 

Fig . 10.6 

To determin e the y -coordinate of B , YB, we observe that tri angles ABC a nd ACD 
a re sim ila r , so tha t 

o r 

giving 

We have 

a nd 

so the integra l is 

AB AC 
AC AD 

YE = R, 

-Y 
g I ( y) = -~ /r===:=, ===" 

v R- - y-

= 2'IT JRR ~ R dy 
R t h 

= 2'IT R [R R2 ] _ 2'ITR 2h --- - --
R + h R + h 

If we let Ac represent the area of Earth' surface , then Ac = 4'ITR 2, 0 th a t 

A z 2'ITR 2h h 
Ac 4'ITR 2(R + h) 2(R + h)' 
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b. In April 1983, two members of the Space Shuttle Challenger crew , Story Mus­
grave and Donald Peterson , pe rformed an extravehicular activ ity (a n activity 
outside the spacecraft) whi le Challenger was at an a ltitude of 280 km. What frac­
tion of Earth did they see? (Use 6380 km fo r the Earth 's radius.) 

Solution: For h = 280 and R = 6380 , 

A z - 280 - 0 021 2 1 
A e - 2(6380 + 280) - . , or . percent. 

c. Di scuss th e manner in wh ich the fraction A zi A e varies with the a ltitude h . 

Solution: Intuiti on suggests that as h increases , the value of A J A e should vary from zero to 
112. On the surface of Earth , the fraction is ze ro. As h increases , so does the 
fraction , and yet it must a lways be less than 1/2 ; th at is , one cannot hope to view 
more tha n a hemisphe re a t anyo ne time . A little a lgebra bears this out. 

A z h 
Ac 2(r + h ) 

is certa inl y ze ro when h = O. Observe that 

1 

As h increases , the deno min ato r of the right-hand side decreases , which forces 
the e ntire fraction A zi A e to increase . Furthermore, as h -7 co, r I h -7 0, and con­
seque ntly A zi Ae approaches 1/[2(1 + 0)] = 1/2. 

d. At what a ltitude will an as tron aut see o ne-fo urth of Ea rth 's surface? 

Solution: We must find h such tha t 

Solution: 

1 h 
4 2 (6380 + h) 

4· h = 2 (6380) + 2· h 

2 . h = 2 (6380) 

h = 6380 km. 

e. The first astronauts to travel th at far from Ear th were the Apollo 8 crew 
(Anders , Bo rma n , and Lovell) , who orbited the Moon o n C hristmas D ay , 1968. 
Wh at pe rcent of Earth 's surface could these astronauts see as they pas ed the 
Moon , a di stance of 3.76 x lOs km from Earth ? 

A z 3 .76 x lOs 
Ac 2 (3.76 x lOs + 6.38 x 103) 

= 0.492 , or 49.2 percent 

3.76 X 105 

2 (3.82 X 105
) 
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PROBLEM 5. The reflective prope rti es of the conic sectio ns were discussed in the fin al two prob­
le ms of Chape r 9 , where the fo rmul a fo r the slope of the tange nt to a parabo la 
was used . Use di ffe renti ation to find such a fo rmula for each of the fo llowing 
co nics a t a point (xo, Yo)· 

a . The parabo la y 2 = 4px 

Solution: Diffe re nti a ti o n produces 

dy 
2y dx = 4p 

So the slope of the ta ngent at (xo, Yo) is 2p , or , if sta ted in terms of Xo, 
Yo 

slope = ±~ = ±.Jf". 
Y 4pxo Xo 

2 2 

b. T he e llipse ~ 2 + ~ 2 = 1 

Solution: D iffe re ntia ting this equ atio n , 

T he slope of the tangent at (xo, Yo) is then 

2 2 

c. T he hyperbola x 2 - Y
b

, = 1 
a -

Solution: T his is exactly the same as (b) with o ne sign ch ange , so that the slope of the tangent 

( )
. b 2 Xo 

at xo, Yo IS """2 - . 
a Yo 

PROBLEM 6. O ur fi na l example in thi s chapter is a result of the spectacula r discovery by th e 
Voyager space probes tha t o ne of Jupite r 's moons, 10 , is the site of active vo lca­
noes , th e fir st kn own insta nce of vo lcanoes other than those here o n E arth . Im ages 
return ed by the spacecraft have provided measureme nts which scientists a re 
using to deve lop and evalua te mode ls by which both the behavio r and possible 
ca uses of thi s vo lcanic acti vity may be understood . 
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T he sta rting po in t is the fa mili ar projectile problem with the va lid condit ion (i n 
contrast to such prob lems applied to Earth) tha t a ir resis tance is neglected , since 
10 has no a tmosphe re. It is also co nvenient to begin the modeling process by 
assuming tha t the gas and solid pa rticles ejected from the vo lcano 's opening do no t 
affect each o ther's motion upo n e jectio n , th at the opening is circular (roughly) , 
and tha t a ll particles sta rt fro m the same po int be low the surface with the same 
initi a l ve locity at all possible escape angles in an y directi o n . These assumptio ns 
toge the r have been ca lled the ballistic model . 

a. Pho tographs of th e plumes of so me of l o's active vo lcanoes show th at any verti ­
ca l cross secti o n thro ugh the volcano vent 's ce nte r has th e shape diagrammed in 
F ig. 10 .7 , where we have placed the r-axis alo ng l o 's surface and the z -axis pe r­
pe ndicula r to the surface . If (r, z) is a representative po int in such a cross sec­
ti o n , find an expressio n fo r the escape angle i (o r a trigo no metric functi o n of i) 
which will cause an ejected particle to pass thro ugh this po int (i is measured from 
the z -ax is). Let r p be the radius of the circular ope ning , Vo the initi a l ve locity of the 
pa rticle , and d the distance be low the surface of the point whe re th e 
particle origin ates . 

z 

d 

r' ----1 

Fig. 10.7 

Solution: If g is the va lu e of l o 's grav ity and to the time at which th e particl e is e jected , the n o ur 
model is given mathe matica lly by th e fo llowing co nditi o ns : 

d2z dz - g . = Vo cos i ., 
dl 2 - - ' dt 

I = to 

dr 
= Vo sin i ; 

dL, = '0 

z (Lo) =: -d 

r (to) =: 0 

R out ine integra ti o n and applica tio n of th e initi a l conditio ns result in 

(A) ( ) I ? + . d 1 2 . z l = - "2gL -+ gLot VoLCOSl - - "2gto - votoCOS l 

(B) r (t) = (vo sin i)(t - to) 
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To get an expression for i, we eliminate t by so lving equation (B) for ( a nd subst i­
tuting this expression into e quation (A) , which gives 

(C) 
-gr2 , . . 

Z = --2 cosec- l + r cot l - d. 
2vo 

Since equation (C) contains cosec2 i and cot i, we may use the identity 
cosec2 i = 1 + coe i to obtain an equation in cot i, namely, 

gr2 gr2 
-2 2 coe i - r cot i + -2 2 + d + z = o. 

Vo Vo 

Applying the quadratic formula, 

co t i = r ± 

a nd simplifying, 

(D) 

We see that there are two possible ejection angles that will bring a pa rticle through 
a pa rticul a r point , one o n th e way up and the other o n th e way down. T hi s is 
illustrated in Fig . 10.7, at the point marked (r , z) . 

h. If io is the largest possible escape angle for the ve nt , express the he ight Zm of the 
lowe r boundary of the portio n of the plume that co nta in s both upward- a nd 
downward-moving pa rt icle (identified in Fig . 10.7) as a function of r, and then 
find rm and rp of Fig. 10.7. 

Solution: From equa tio n (C) , with i = in, 
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grZ , . . 
Zm = - -2 1 cosec-to + r cot to - d ; Va 

rm and rp a re the va lu es of r in this express ion for whi ch Z m = O. Setting Z m = 0 and 
multiplying by 

produces the equatio n 

r2 _ 2v~ sin io cos io r + 2vJ d sinzio = O. 
g g 

Using the positive sign in th e quadratic fo rmul a to get the larger r, 

v
2 

[ rm = ; sin io cos io + 2 · 2gdj . cos l o - - Z ' 
Vo 
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and using the nega tive sign to get the sma ller va lue , 

vcr . . [ . ~ 2 ' 2gd] r p= [is1nlo COS lo - COS lo - V6 

c. E xpress the height ZM of the upper boundary of the plume of Fig. 10 .7 as a 
functi o n of r and find an expression fo r hp, the maximum he ight of the plume. 

Solution: The uppe r bo undary is the set of points fo r which the two sol utio ns given by 
equ ation (D) of pa rt (a) coalesce ; in o th e r words , where the radical vanishes, or 

1 _ (gr)2 _ 2g (d + ZM) = 0 
v6 V6 ' 

so 

The maximum height hp occurs when r = 0: 

(E) 
V6 It = - - d 

p 2g 

d. Express the coo rdin a tes (r J, z,) of the po int to the ri ght of the z -ax is , at which 
the upper and lowe r boundaries meet , in te rms of io, Yo, g, and d. 

Solution: Since this point is o n the uppe r boundary , we have the rad ical of eq uat ion (D) eq ual 
to 0, and ince it is on the lowe r boundary , we have i = io. From eq uatio n (D), 

V
2 v 2 

. 0 o . 
cot l O = - , so r, = - tan lO. gr, g 

From o ur so lutio n to pa rt (c) , 

V6 gr,2 
Z = --- -d , 2g 2V6 

or 
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e. Measurements of images obtained from the Voyager 1 im ag ing sys tem have pro­
vided va lues for rm , rp , a nd hp. Use the foregoing results to obtain ex pressio ns so 
th at io, vJl g, and d may be calculated from these measure ments. 

Solution: From equ at io n (E), d = (vJ / 2g) - hp. This will give d if we have vU g, si nce hp is 
known . 

From part (b), 

2vJ . . . 
rm + rp = - Sin LO cos LO 

g 

or 

z + 
Vo -~ - ( ) (2 . ) - . (2.) - r m + r p cosec LO · g sIn to 

This wi ll give vJ/g if we have io, si nce rm and rp are known. 

Also from pa rt (b) , 

2V6 . .~ J. 2gd 
rm - rp = - Sin LO cos-to - - z . 

g Vo 

Since d = (vU 2g) - hp, 

2vJ . .~ z. 2ghp rm - rp = - Sin to cos to - 1 + 2 
g Vo 

2vJ . . 
= - Sin to 

g 

2g7p - si ozio 
rm - rp = ____ vo~ ____ __ 
rm + rp cos io 

b · . 1L 2 si n io cos io Squaring to elimin ate the radical and u st ltutlng ? = , 
Va rm + rp 

2(2 sin io cos io) h . ? 

+ p - S ln~o 
rm rp 

4hp . ? 
= --+- tan to - tan-to, 

rm rp 

which we can solve for tan io using the quadra tic form ul a: 

tan io = [~± 
I' m + rp 

-, 
I 



Calculus 

Since io appears on the images to be smaller than 45°, the minus sign is 
chosen, giving 

f. Voyager 1 detected eight volcanic plumes , of which plume 1 and plume 3 were 
closest in shape to our diagram in Fig . 10.7. Table 10.1 gives the observed mea­
surements of rm , rp, and hp for these plumes . For each , calculate io, vUg, and d 
from these data , then use the results of part d. to predict r l and ZI for these plumes. 

Table 10.1 
Measurements of lo's Plumes 

Plume 
No . rm rp hp (measured in km) 

1 500 17 .5 280 
3 125 7.5 70 

Solution: For plume 1, 

. ( 280) ) ( 280)2 ( 482. 5)2 
tan Lo = 2 517.5 - 4 517.5 - 517 .5 = 0 .533 

:. io = 28.05° 

v2 

~ = (517.5) (cosec (56.1°» = 623 km 
g 

vJ 623 
d = - - h = - - 280 = 32 km 2g p 2 

v 2 

r l = ~ tan io = (623) (0.533) = 332 km 
g 

ZI = ; (1 - tan2io) - d = 6;3[ 1 - (0.533)2] - 32 = 191 km . 

For plume 3, the results are as follows : 

tan io = 0.4821 , so io = 25.74° 

v2 

~ = 169 km ; d = 15 km ; r l = 82 km ; ZI = 50 km 
g 
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Solution: 

g. Fo r p lume 3, it was a lso poss ible to measure r 1. T his measure ment was 125 km . 
Compute the re la ti ve e rro r of our calcula ted va lue for r1 as a percent. 

Absolute e rro r = 182 - 125 1 = 43. 

Re lative e rro r = 1~5 = 0.34 = 34 pe rcent. 

This e rro r is large e nough to dema nd refine me nt of the mode l. T he assumpti o n 
least like ly to hold is th at e jected gas and particles do not affect each o the r's 
motio n ; it is mo re probable th at the combin ati o n of pa rticle sizes a nd ra te of gas 
fl ow is such that the pa rticles a re carried by th e gas in to the centra l port io n of th e 
top of the plume and re leased into ba llisti c trajecto ri es o nly o n descent. 

Although we shall not consider these modifica ti ons here, the reade r may be 
inte res ted in knowing th at the results of furth er refinements of the mode l a re 
co nsistent with the theore tical proposal th a t l o's vo lca noes a re due to ti da l 
effects in its surface generated primarily by anothe r Jovian moo n , E uro pa. 

-- - ----- ---
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The e lliptica l shape of p laneta ry o rbits was first a serted by Johannes Kepler 
on the basis of painstaking observat io ns made by him and by his prede­
cessor , Tycho Brahe. It was Isaac ew to n's great achievement to establis h 

mathe matica ll y that the inverse sq uare law force of gravitat ion mu t produce a 
trajectory that is one of the coni c sectio ns. We present this ana lysis as a n appendi x 
ra th er th a n in the ca lcu lu s chap te r (Chapter 10), since the manipulations needed 
in th e development include so me co mpl ex iti es that may be unfamiliar to the 
inte nded audi ence. 

Before beginning the main problem, we need to estab lish some properties of first 
and second derivatives of th e vectors. T he un it vectors /, }, u" Uo are shown in 
Fig. A.I. We have 

U , = / cos B + } si n B 

and 

Uo = I( - sin B) + TcosB. 

Differentiating with respect to time , 

du , - dB - dB - ( dB ) - = i ( - sin B)- + j (cos B)- = U - ' 
dt dt dt 0 dt ' 

du o - dB - dB - dB dt = i (-cos B) Cit + j (-sin B) Cit = - u'Cit; 

yt 
Li , 

j 

I 
I 
I 
I 
I 

~---------------x 

Fig. A.I 

(r .8 ) 

In pol a r coord in ates, th e position vector is (r ur). and so 

------- --



· d2 
- d ( dr - de - ) acce lerat io n = - , (r u ,) = -d -d u, + r-

d 
U o dr - e e t 

d2r - dr du , dr de - d2e - de duo = - u . +--+-- u + r- u + r---
dr2 ' dr dt dt dr 0 dt 2 0 dl dt 

d 2r - drde - d2e - (de )2-
= -2 U , + 2 -

d 
-d U o + r-, U o - r -d u , 

dr r t dt - r 

We now consi der the sta te me nt of the law of gravitation: The force on the orbiting 
body (mass m) is proportional to the prod uct of the masses of the two bodies 
invo lved a nd inversely proportiona l to the squa re of the di sta nce between them . 
In symbols, 

d2(r 1A,) _ GMm -
m dt 2 - --r-2- u" 

where the minus sign expre ses the fact that the fo rce of grav itat ion acts in the 
direct io n towa rd th e mass M. Usin g the result above for acce lera tion , a nd cance l­

ing the m, we get 

[ d
2
r _ r (de )2] u + [2 dr de + r d

2
e] U = 

dr 2 dl ' dr dr dt 2 0 

Since the u 0 term is mi ss ing o n the right, we have 

2 dr de + r d
2
e = 0 

dt de dt2 . 

GM ---,- U,. 
r -

Keple r ' first law , that the radius vector sweeps o ut equ a l areas in eq ua l times, 

can be stated mathem atica ll y as ~ r2 ~~ = A, a co nsta nt. If we differentiate thi s 

exp ress io n with respect to tim e , we get 

1. [2 r dr de + r2 d
2
e] = 0 

2 dr dr dt 2 

o r 

1:. r [2 dr de + r d
2
e] = 0 

2 dr dr dl 2 

So we may le t the consta nt A = r 2 ~~, a nd this is eq uiva le nt to the fact th a t the lAo 

coefficie nt va ni shes, or Ke pler 's first law. 

Eq ua ting th e lA , term s , 
GM 
r2 . 
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Using the substitution B = GM, as well as A = r 2 ~~ , produces the differenti a l 

equa tio n 

(1) 

We are seeking r as a function of 8; it turns out to be eas ie r to find l / r as a function 
of 8. This can be do ne by le tting w = l l r, o r equi va le ntly, r = l l w. Then 

dr 
dt 

Diffe re nti ating aga in , 

We can now rewrite (1) as 

o r 

1 dw 1 dw d8 --- ----

A dw . 1 d8 _ 2 d 8 - A - de ' SInce w 2 dl - r dt - . 

- A~ ( dw ) = -A d
2
w d8 

dl d8 d8 2 dl 

B 
which has a so luti o n , w = C cos (8 - 80) + A 2 ' 

But thi s mea ns th at 

1 1 A 21 B 
r = - = = 

w ccos(e - eo) + (BI A 2) 1 + (CA 2I B) cos (e - eo)" 

For A 21 B = ep , C = - 11 P, eo = 0 , we ge t r = epl (1 - e cos 8) , the equatio n of 
th e co ni c section in Chapte r 9 , Prob lem 4. 

We nex t de rive the " vis-v iva ," o r energy integra l , and show th a t the ecce ntricity of 
a co ni c sectio n trajectory is physically determined by the to ta l e nergy of th e 
grav ita ti o nal syste m . Again , it he lps to first es tab lish so me properties of the vec­
to rs in vo lved. In this contex t , we will need th e squ are of the velocity vector , v: 



d( 2) - - -
2 - - v d - - - dv dv - - dv v = v 0 v SO -- = - (V 0 V) = V 0 - + - 0 V = 2 v 0_ 

, dt dt dt dt dt 

so that 

The gravitational equation may be written in the form 

dv GMm -
mdt" = --r-2 - Ur o 

Premultiplying by V, using the dot product, produces 

- dv GMm--
m v oTt = --r-2-v 0 Ur o 

Substituting 

on the right , 

on the left , and recalling that ur 0 ur = 1 while ur 0 UB = 0 , we get 

.i [.! m V2] = GMm.E.. (.!) 0 

dr 2 dt r 

Integrating , we get the energy equation 

(2) 
1 GMm 
2m v2 

- -r- = E, a constant. 

In physics , the first term on the left, (1/2) m v 2
, is the kinetic energy of the system ; 

h d GMm 0 h 0 0 I 0 I E h t e secon term , - -- , IS t e gravltatlOna potentia energy ; , t e constant 
r 

of integration, is the total energy 0 We may evaluate E by considering a particular 
point in the orbit. Since r = epl (1 - e cos e) , r attains its minimum value for 
e = 1T : 

-~ 
rmin - 1 + e O 
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But 

so 

1 r. = W max , 
mm 

1 + e 
W max = - - . 

ep 

Now from the vector express ion for velocity, 

2 = (dr )2 + ( dO)2 
v dt r dt . 

But wh en 0 = 'IT , the ve locity is entirely in the Uo direc ti on, so for W Wmax. 

( d8)2 v2 = rd( and equation (2) becomes 

dO 
recalling that A = r l dt ' a nd B = GM . Now, using th e quadratic fo rmul a with 

the positi ve sign, 

_ Bm + V (Bm)2 + 2 m A 2 E _ !l ( ~. 2A 2 E ) 
W max - ? - 2 1 + 1 + 2 

mA - A B m 

Equating the two express io ns for W max> and reca lling th at ep = A 2/ B: 

and therefo re 

(3) 



Since m > 0 , we see tha t the nature of the tra jecto ry depends o n the total energy 
E: 

If E = 0 , the n e = 1 and the tra jecto ry is a parabola ; 

if E < 0 , then e < 1 and the tra jectory is an e llipse ; 

if E > 0 , then e > 1 and the tra jecto ry is a hyperbo la. 

It is sometimes useful to so lve (3) for E, giving 

GMm (e 2 
- 1) 

- 2 ep 
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GLOSSARY 

Apogee 

Attitude of a spacecraft 

Celestia l equa tor 

Celestial sphere 

Center of mass 

Conj unction of planet 

Cosmology 

Declin ation 

Direction cos ines 

Ecliptic 

Electromagnetic spectrum 

E phemeris 

Geocentric 

Iteration 

Jovian 

Julian day 

Orbital pe riod 

Perigee 

Photon 

The most distant point from Earth reached by a body in an elliptical orbit with Earth 
at the primary focus. 

T he o ri entation of the spacecraft in space, with respect to some chosen coordinate 
system. 

T he projection of the equatori al plane of Earth on the celestial sphere . 

An imaginary sphere of infinite radius on which celestial objects appear projected . 

The point within a body at which all the mass could be loca ted without changing its 
dynamical behavior. 

The position of the planets when they are on the same right ascension circle on the 
celestial phere (in othe r words, when they appear closest toge ther in the sky). 

The study of the evolution of the cosmos or universe. 

T he analog , on the celestial sphere, of latitude circles on Earth . 

The co ines of the angles made by a vector in space with each of the three positive 
coordin ate axes . 

The path described by the cente r of the Sun on the geocentric celestial sphere during 
the course of a year . 

Radiation of various wavelengths emitted in the form of waves carrying rqpidly vary­
ing e lectric and magne tic fie lds (light is an example of a portion of the spectrum). 

A li st of the successive positions of a celesti al object o n the geocentric celestial 
sphere for a seri es of equally spaced times. 

Concentri c with Earth. 

A repetitive mathematical procedure , on an initially chosen trial value , which can 
produce improved va lue of a desired quantity. 

Relating to the planet Jupite r. 

T he number of days , and fractio n of a day, measured from noon on 1 January of the 
yea r 4713 B.C. 

T he time it takes for an object to complete one orbit. 

The close t point to Earth reached by a body in an e lliptica l orbit with Earth at the 
primary focus. 

The smallest unit (or " part icle") of electromagnet ic radiation , carrying one quantum 
of energy. . 

1( ECE 
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Pitch 

Right ascension 

Right-handed three­
dimensional coordinate 
system 

Roll 

Watt 

Yaw 

192 

An angular rotation of an aircraft or pacecraft around an ax is through the wings 
(which has the effect of moving the nose up o r down). 

The analog , o n the celestia l sphe re , of the lo ngitude circles o n Earth . 

A convention of three bas is vecto rs most simply represented by the thumb , index, 
and middle fingers of the right hand when ex tended at right angles to each othe r ; the 
x-axis is along the thumb , the y-axis along the index finge r , and the z-axis along the 
middle finger. 

An angular rotation of an aircraft o r spacecraft around an axis along its le ngth (which 
has the effect of tipping its wings). 

A unit of power. ( In the mks system of units , 1 watt = 1 joule pe r seco nd .) 

A n angular rotation of an aircraft or spacecraft around an ax is pe rpendicul a r to its 
body (which has the effect of moving the nose from side to side). 


