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should know not only something about the development of pure mathematics

but also something about its applications. Several years ago NASA, recog-
nizing the appeal of aerospace activities, initiated and supported the development
of curriculum supplements for several high school courses. Because attainments in
aerospace would not be possible without mathematics, it was most appropriate
that a supplementary publication dealing with space activities be prepared for
teachers of mathematics.

H igh School mathematics teachers have long been aware that their students

The first mathematics curriculum supplement, Space Mathematics, A Resource for
Teachers, was published in 1972. One of the most popular and oft-requested of the
supplements, the book has been unavailable for several years. This volume up-
dates the earlier work. We hope that a new generation of students will become
more interested in mathematics as the result of seeing some of its significant appli-
cations in recent and current space projects. Working problems such as those in
this book should enhance both the mathematical knowledge and skills of students
and their appreciation and understanding of aerospace technology and achieve-
ments.

NASA’s Technical Monitor for this project was Muriel M. Thorne, Educational
Programs Officer, under the general direction of William D. Nixon, Chief of Edu-
cation Services, NASA.

National Aeronautics and Space Administration

Washington, D.C.
September 1985
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n 1972, a collection of mathematical problems related to space science entitled

Space Mathematics, A Resource for Teachers was published by the Educational

Programs Division of the National Aeronautics and Space Administration
(NASA). As an early user of that publication, I can say that it has been both a
pleasure and a challenge for me to undertake the revision of that volume of en-
richment materials, especially in the light of another twelve years of activity in
space exploration. This interval has been a period of much progress in both the
science and the technology associated with the space program, and it has offered a
wealth of new material in which to find applications of high school mathematics.

The basic format of the original publication has been retained, as well as many of
the classical problems and those which complemented the new material. In devel-
oping the examples and problems presented here, we have aimed at preserving the
authenticity and significance of the original setting while keeping the level of math-
ematics within the secondary school curriculum. The problems have been grouped
into chapters according to the predominant mathematical topic. Within each chap-
ter we have attempted, as far as possible, to group problems involving similar
themes. There is a wide range of sophistication required to solve the various prob-
lems. Since this is a resource book for teachers, we have assumed that the reader
will be interested not only in problems that can be brought directly into the class-
room, but also in those that, although beyond the current level of their students,
will increase the teacher’s own awareness of some of the interesting applications of
mathematics in the space program.

Perhaps the most valuable potential of a collection such as this lies in its ability to
convey a sense of how secondary school mathematics is actually used by practicing
scientists and engineers. Attitudes and approaches may thereby be fostered, on

the part of teachers, that can help students to be more insightful users of the
mathematics they learn. The present school mathematics curriculum, for example,
gives no hint that many real-world problems do not have analytic solutions in
closed form but may nevertheless be satisfactorily ‘“‘solved” by using carefully cho-
sen approximations or the numerical methods made possible by modern computers.

In this connection, we stress that in order to use numerical analysis correctly or to
make good approximations, it is necessary to know something of the theoretical
background of the subject and to understand the concepts of precision and accu-
racy and the use of significant digits. Also, methods that reveal meaningful aspects
of a procedure are preferable to purely algorithmic prescriptions; the perhaps un-
familiar “‘factor unit” method of unit conversion presented in Chapter 2 is actually
quite commonly used in science and engineering. It not only removes all uncer-
tainty about whether to multiply or divide by a conversion factor but also is far
more likely to contribute to an understanding of the underlying concepts than, for
example, the more usual metric system algorithm expressed in terms of “‘moving”™
the decimal point.
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Launch of the Space Shuttle Challenger on
June 18, 1983.
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aware of the rapid development of space science. We realize that the spec-

tacular achievements of the space program have depended heavily on mathe-
matics—mathematics that is generally complex, advanced, and well beyond the
level of most secondary school curricula. Even though this perception is valid,
there are many significant aspects of space science that can be understood using
only high school mathematics.

Teachers of mathematics, like most adults in today’s world, can hardly fail to be

The exploration of space naturally uses the tools and techniques of astronomy.
Astronomy in turn is gaining much new information as a result of sending sci-
entific probes and satellites beyond Earth’s atmosphere. Because astronomy has
stimulated the growth of many of the concepts and methods of mathematics, the
high school teacher will find here much that is familiar. However, in some in-
stances the way mathematics is used to solve real-life problems is rather different
from methods emphasized in school courses.

In this opening chapter, we shall examine several recent achievements of the
National Aeronautics and Space Administration and identify mathematical ideas
and questions that may be of interest to high school teachers and students. When
appropriate, we will refer to a problem illustrating some aspect of the subject
and worked elsewhere in the book.

The Space Shuttle

The Space Shuttle (Fig. 1.1) is a true aerospace vehicle—it takes off like a rocket,
operates in orbit as a spacecraft, and lands like an airplane. To do this takes a
complex configuration of three main elements: the Orbiter, a delta-winged
spacecraft-aircraft, about the length of a twin-jet commercial airliner but much
bulkier; a dirigible-like external tank, the only expendable element, secured to the
Orbiter’s belly and containing two million liters of propellant (Chapter 4, Prob-
lem 5); a pair of reusable solid rocket boosters, each longer and thicker than a
railway tank car and attached to the sides of the external tank.

Each Space Shuttle is meant to be just one element in a total transportation
system linking Earth with space. In addition to providing for continued scientific
investigations by transporting such systems as the Spacelab and the Large Space
Telescope, recently renamed the Edwin P. Hubble Space Telescope, into orbit
(Chapter 3, Problem 4), the Space Shuttles are also expected to carry the build-
ing blocks for large solar-power space stations or huge antenna-bearing structures
for improved communication systems (Chapter 4, Problems 9 and 10). Structures
that would be too fragile to stand up under their own weight on Earth will be
folded up in the Shuttle’s cargo bay and assume their final shapes in the micro-
gravity environment of space. The Shuttle will also be capable of carrying a work
force of seven people and returning them home after the completion of their work.



Mathematical Aspects of Some Recent NASA Missions

One of the most basic mathematical problems raised by the launching and control-
ling of a Shuttle or any other spacecraft is that of describing its motion. This
problem requires the ability to specify the position of the spacecraft’s center of
mass and its attitude (orientation) and to describe changes in both during flight.
The specification of position and attitude can be accomplished by setting up suit-
able coordinate systems (Chapter 7, Problem 10). Instruments to determine a
spacecraft’s attitude are most effectively referenced to a spacecraft-based coordi-
nate system, whereas ground control is best accomplished in terms of an Earth-
based system. This dual-based system necessitates transformations between
coordinate systems (Chapter 7, Problem 1, and Chapter 8, Problem 2).

Describing a change of position and attitude requires an understanding of the
measurement of time (Chapter 2, Problem 11). It is interesting to note here that
our definition of a day on our rotating Earth must be redefined for a Space Shuttle
Orbiter crew. For them the Sun might rise again and again every hour and a half!

The Planetary Probes

The launch of the two Voyager spacecraft in the summer of 1977 climaxed a series
of fruitful missions of planetary exploration including the Mariner, Viking, and
Pioneer series of probes to Mercury, Venus, Mars, Jupiter, and Saturn. All these
missions sent back new information about the structure and composition of these
planets and their associated moons. We focus in this book on some of the results
of Voyager 1 and Voyager 2. These probes, which benefited from more highly
developed instrumentation and computer capability than their predecessors,
approached closer to Jupiter (Chapter 7, Problem 11) and Saturn than previous
flights did. Stunning pictures resulted, showing the unanticipated presence of
active volcanoes on Jupiter’s moon Io (Chapter 10, Problem 6) and the fine
structure of Saturn’s rings.

Among the mathematical problems that arose in these missions were the
following.

1. Transmitting spacecraft observations back to Earth (Chapter 5, Problems 2
and 3, and Chapter 8, Problem 1).

2. Determining the time of transmission of spacecraft observations (Chapter 3,
Problem 5).

3. Calculating the rotation period for planets such as Saturn, which is not solid
and has no outstanding observable features like Jupiter’s Great Red Spot (Chapter
2, Problem 13).

11
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Satellites

NASA began its formal existence in 1958 and by the end of 1979 had successfully
launched more than 300 large and small satellites with missions as diverse as
observing Earth’s weather (Synchronous Meteorological Satellite [SMS] series) and
resources (Landsat series), providing communication links for television signals
(Applications Technology Satellite [ATS] series), and measuring solar radiation out-
side Earth’s atmosphere (Orbiting Solar Observatory [OSO] series).

The design of these satellites and their experiments and the analysis of the data
gathered involve a variety of mathematical questions. We shall consider some of
the following examples.

1. The connection between the conic sections and the law of gravitation
(See Appendix).

2. For elliptic orbits, the connection between the orbit parameters and the period
of revolution (Chapter 9, Problem 11) and the determination of the exact posi-
tion of a satellite in its orbit at a specified time (Chapter 9, Problems 19 and 20).

3. The geometry necessary to correct for distortions arising when flat pictures
are made of a curved Earth (Chapter 7, Problems 7 and 9, and Chapter 10,
Problem 2).

4. The need for logarithms to understand how radiation is absorbed by Earth’s
atmosphere (Chapter 6, Problem 3).

5. The mathematical analysis of the reflective properties of the conic sections
needed to design an X-ray telescope (Chapter 9, Problems 21 and 22).

6. The judicious use of approximation (Chapter 3, Problem 8; Chapter 4,
Problems 6 and 8; Chapter 7, Problem 6; Chapter 9, Problem 22).




COMPUTATION AND
MEASUREMENT
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A photograph of the planet Jupiter made
from images obtained by Voyager 1 on Feb-
ruary 5, 1979, showing the Great Red Spot
and three of Jupiter’s four largest satellites:
lo (in front of Jupiter), Europa (brightly lit, to
the right), and Callisto (barely visible at the
bottom left).
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PROBLEM 1.

Solution:

pace science is based on a mathematical description of the universe. This

mathematical description is in turn based on defining physical quantities

clearly and precisely so that all observers can agree on any measurement of
these quantities. Every measurement has two parts: a number and a unit. In
mathematics, we tend to focus on the numbers and assume that the units are taken
care of; but in scientific work, units receive careful attention through a proce-
dure known as dimensional analysis, which is illustrated in the first problem.

Among the physical quantities used to describe the universe, some are considered
fundamental quantities whereas others are derived quantities, comparable to the
designation of definitions and undefined terms in a mathematical system. Although
it does not really matter which particular quantities are the ones designated as
fundamental, the most common are length, mass, and time. In scientific work the
two major systems of units for these quantities are the mks (meter-kilogram-
second) and the cgs (centimeter-gram-second). Every measurement is a compari-
son with the standards that are universally accepted as definitions of these funda-
mental units. In astronomy and space science, where large distances are common,
the meter and even the kilometer are too small to be convenient; in Problems 3.,
9, and 10 of this chapter, we show how more suitable units for length are defined.

Dimensional analysis (manipulation of units according to the rules of algebra) is
the procedure used to ensure consistency in the definition and use of units. For
example, since force is, by definition, the product of mass and acceleration, mea-
sured respectively in kg and m/s’ in the mks system, the unit of force in this
system must be equivalent to kg - m/s’. A new term, the newron, was created to
describe the unit of force: 1 newton = 1 kg - m/s’.

Newton’s law of gravitation, one of the most important ideas in space science, states
that the force of gravitational attraction between two bodies of masses M, and M,
is proportional to the product of the two masses and inversely proportional to the
square of the distance R separating the two masses. If G is the constant of pro-

portionality, called the universal gravitational constant, this law can be stated in
GM,\M,

symbols as F = R? =. What must be the unit for G in the mks system?

Using dimensional analysis, we equate the known units in accordance with the
relationship above without worrying about the numbers, then solve algebraically
to get the unknown unit. This gives

newton = (unit for G) (kg) (kg) (m) ?

5

or (unit for G) = (newton) (m)*(kg)

(kg msec?) (m)* (kg) °

I

m’ kg ' sec’.
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PROBLEM 2.

Solution:

PROBLEM 3.

Solution:

We know that in a circle of radius r, if an arc of length s subtends an angle 6 and 6 is
measured in radians, then s = 6. Show that the radian is essentially dimension-
less (i.e., an angle of w/4 radians is just the real number m/4).

Since r and s are both lengths, in the mks system they will both be measured in

s m . . .
meters. From s = rf we have 6 = = Since the units cancel, 61s

dimensionless.

Scientific theories and technological development both require accurate mea-
surements. Since every measurement is an approximation, an important aspect of
scientific and technical work is the analysis of experimental error and the control
of the propagation of error when computations are made using measured quan-
tities. The use of computers to solve complex problems by numerical methods
has made error analysis even more important because computers approximate real
numbers using finite decimals. Moreover, computers represent numbers inter-
nally using a floating point binary representation. Even though it is not really
necessary to understand the binary numeration system to work with computers,
such knowledge is essential to the analysis and control of error propagation in
computational work. The next problem considers the floating point binary repre-
sentation of our familiar numbers.

The binary (i.e., base two) representation of a number uses only two digits, 0 and 1.
Whereas in base ten the actual value of a digit is the product of its nominal value
and the appropriate power of 10 according to the position of the digit with respect
to the decimal point, in base two the value of a digit is the product of its nom-

inal value and the appropriate power of 2. So, for example, the binary number
10011 has the value that we represent in base ten as 1 x 2* + 0 x 2° + 0 X 22 +

1 x2'+1x2% or16 + 2 + 1 = 19; the binary number 10.011 is the same as the
decimal number 1 2E 40 2% 02t 1 2 T 2 o2+ 0.250
0.125 = 2.375.

a. Determine the binary representations of the decimal numbers 625, 6.25, and
0.0625.

625 can be written as the sum
51264t 3y G =2 R0 DO
50 625, = 1001110001 ,y,.
6.25 can be written as the sum

42 F == 22+l FOFF

$0 6.25,, = 110.01,,.

— =)

10000 16

D60 =l s

50 0.0625,, = 0.0001 .
147
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Solution:

b. Show that it is impossible to represent the decimal fraction 0.2 exactly in a finite
binary code.

0.2 = 2/10 = 1/5. To express this in binary notation, we must write 1/5 as a sum of
unit fractions, each having some power of 2 as denominator. Since 1/2° is the
largest such fraction smaller than 1/5, we begin by finding the difference:

1 1 _8-5_ 3

50 23 5 .97 8 Gl

Now the largest unit fraction less than 3/(5 - 2°) with a power of 2 as denominator
is 1/2%, so we next find the difference:

- 1 =5 1
SR T T

This means that 1/5 = 1/2° + 1/2* + (1/2%) (1/5). Since the fraction 1/5 has re-
curred, multiplied by 1/2, we see that the first four digits we have found to the
right of the binary “*decimal point,” 0.0011, will repeat continuously. In other
words, 0.2, = 0.0011,,. (A quicker but less intuitive approach to finding this
representation is to express 1/5 as the binary fraction 1/101 and then divide 101
into 1, using binary arithmetic.)

The reader can use the method of part (b) to show that the decimal fractions 0.1,
0.3,0.4,0.6,0.7, 0.8, 0.9 also have infinitely repeating binary representations.

¢. Almost all computers use a floating point binary representation for numbers.
In this system, every number is expressed in the form 0.dyd, ...d, x 2™ where

d =1,d=0orlfori=2,3,...,n,and mis an integer. For example, the
floating point representations of the numbers in part (a) would be

625 = 0.1001110001 x 21°
6.25 = 0.11001 x 2°
0.0625 = 0.1 x 273

Different computers have differing capabilities both with respect to the length (rn)
of the string of 0’s and 1’s that can be stored for any single number and with
respect to the exponent m that can be stored. The limits available for # and m
determine the largest and smallest number a computer can represent and also

the size of the errors that must result when a number with an infinitely repeating
representation must be stored with only a finite string length available.

If a certain computer can store only an eight-digit string (n = 8), then the repre-
sentation for the decimal fraction 0.2 will be stored as 0.11001100 X 272, What
number is this, and what is the difference between this number and 0.29
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Solution:

256 256
o1l 1 51
b2 256 5 56
2502
5-256 1280

We now state two definitions used in error analysis. These definitions can be
applied to both measurement errors and the errors that arise because of the way in
which numbers are represented in computers. It is probably worth noting in this
context that the term measurement error as used here does not imply that the
measurement has been carelessly made but rather refers to the fact that every
measuring instrument is limited in accuracy and can never provide more than an

estimate of a true value.

Let X7 be the true value of a specified quantity, and let X be the value of this
quantity as measured or as represented in the computer. Then:

absolute errorin X = | X7 — X |

=5

. . T
relative errorin X = X

Observe that absolute error has the same units as the quantity under considera-
tion, whereas relative error (usually reported as a percent) is dimensionless.

The relative error is considered to be the indicator of how good a measurement
or any other approximation is. For example, a measurement of 2.5 mm with a

possible absolute error of 0.05 mm has a relative error of%g. or 2 percent,
whereas a measurement of 1250 km, with a (much larger) possible absolute error
of 5 km has a much smaller relative error 0sz5—56, or 0.4 percent. Awareness of

the appropriate tolerance for relative error is a vital ingredient of scientific work.

19
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PROBLEM 4.

Solution:

PROBLEM 5.

What are the absolute and relative errors if a computer that has an eight-bit binary
digit string represents 0.2 as 0.11001100 x 2 2?

From Problem 3c, the absolute erroris 1/1280, or about 0.0008. The relative
error = 0.0008/0.2 = 0.004, or 0.4 percent.

The use of significant figures is helpful in error analysis. The number of signifi-
cant figures is defined as the number of digits that can be assumed to be correct.
starting at the left with the first nonzero digit, and proceeding to the right. By
this definition, 10.62, 0.05713, and 4.600 all have four significant figures. A num-
ber such as 4300 is ambiguous. This ambiguity may be resolved by using scientific
notation, since we may write the number as 4.3 x 10°, 4.30 x 10°, or 4.300 x 10°
according to whether the number has two, three, or four significant

figures, respectively.

When approximate numbers are added or subtracted, it can be shown that the
absolute error in the sum or difference could be as large as the sum of the abso-
lute errors of the individual numbers. When approximate numbers are multiplied
or divided, it can be shown that the relative error of the result could be as large
as the sum of the relative errors of the individual numbers. This means that for
sums and differences of approximate numbers, the number of decimal places
considered significant can never be greater than the number of decimal places in
the least precise addend. For products and quotients, the number of significant
figures can never be more than the smallest number of significant figures in the
individual factors. Wherever appropriate, numerical results will be given in
accordance with these guidelines.

Earth’s orbit around the Sun is elliptical, but in many cases it is sufficiently accurate
to approximate the orbit with a circle of radius equal to the mean Earth-Sun dis-
tance of 1.49598 x 10° km. This distance is called the Astronomical Unit (AU).
Listed in the chart that follows are actual Earth-Sun distances, given to five sig-
nificant digits, on the first day of each month of a representative year. (The Ameri-
can Ephemeris lists daily distances and the actual times for these distances to

seven significant digits.)

Date Distance (x10° km)
1 January 1.4710
1 February 1.4741
1 March 1.4823
1 April 1.4949
1 May 1.5073
1 June 1.5169
1 July 1.5208
1 August 1.5183
1 September 1.5097
1 October 1.4977
1 November 1.4848
1 December 1.4751

a. To how many significant digits is it reasonable to approximate the Earth-Sun
distance as though the orbit were circular?
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Solution:

Solution:

PROBLEM 6.

Solution:

To two significant digits, each of the distances in the table can be given as
1.5 x 10* km.

b. What are the largest possible absolute and relative errors in using the Astro-
nomical Unit as the Earth-Sun distance in a computation instead of one of the

distances from the table?
(1.49598 — 1.4710) x 10° = 0.0240 x 10 km (smallest table value)
(1.49598 — 1.5208) x 10* = —0.0248 x 10° km (largest table value)
absolute error = 0.0248 X 10° km

relative error = 00245 0.0166, or 1.7 percent.

1.49598

The procedure of dimensional analysis, described earlier, is easily adapted and
commonly used in science and technology for the task of unit conversion. Recall
that in dimensional analysis the units are manipulated in accordance with the
rules of algebra.

Suppose we wish to change a length of 623 cm to meters. The adaptation of dimen-

sional analysis for unit coversion involves multiplication by a factor unit chosen
according to the following simple principles: the factor unit is a fraction with a
value of 1, whose numerator is expressed in terms of the unit we wish to have and
whose denominator is expressed in terms of the unit we wish to change. Since
100 cm = 1 m, in order to change 623 cm to m, we perform the multiplication

623 cm - I m
1 100 cm

, ““canceling” the cm in numerator and denominator to get

623/100 m, or 6.23 m.

More complex conversions can be done using multiplication by several factor
units and those readers wishing to convert between British and metric units can

also use this method. For example, the speed of light, 3.00 X 10’ km/sec, can be
found in miles per hour:

3.00 x 10° km y 1 mile ” 60 sec 60 min

= 6.71 x 10° miles g
1 sec  1.61km _ 1min _ 1hour 6.71 miles per hour

The deep space probe Pioneer 10 took 21 months to get from Mars to Jupiter,

distance of 998 million kilometers. Use the factor unit technique to find its aver-
age speed in kilometers per hour during that period.

average speed = disnet
gesp time

_ 998 x 10°km " 12 months v 1 day
21 months 365days 24 hours

= 6.5 x 10* km/h, or about 65 000 km/h

a

21
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PROBLEM 7.

Solution:

Solution:

PROBLEM 8.

Solution:

22

a. Recall that the Astronomical Unit (Earth-Sun distance) discussed in Problem 5 is

1.496 x 10° km, to four significant figures. Find the Earth-Sun distance in miles
to three significant figures.

1 AU = 1.496 x 10°km

Il

1.496 x 10®km - 1 mile
1 1.61 km

9.29 x 10" miles (almost 93 million miles)

b. The chart that follows gives the mean distance in kilometers of each planet in

the solar system from the Sun. Express these distances in AU, using a suitable
number of significant digits.

Planet Distance (km x 10%)
Mercury 0.579
Venus 1.08
Mars 227
Jupiter 7.78
Saturn 14.3
Uranus 28.7
Neptune 45.0
Pluto 59.1

Since each distance in the table has three significant digits, and the factor unit
e has an exact number in the numerator and six sienificant digits
1.49598 % 10° km stx signiti &

in the denominator, the distances in AU can be given to three significant digits.
Multiplying by the factor unit shown gives the following distances in AU:

Mercury 0.387
Venus 0722
Mars 1.52
Jupiter 520
Saturn 9.56
Uranus 19.2
Neptune 3051
Pluto 39.5

The Solar Maximum Mission (SMM) satellite orbits Earth at a height of 560 km. In
many computations, the Earth-Sun distance of 1.5 x 10® km is used to approxi-
mate the distance of SMM from the Sun. What is the maximum relative error of
this approximation?

The distance of SMM from the Sun is contained within the range (Earth-Sun
distance + (Earth diameter + 560 km)), or (Earth-Sun distance + 6930 km).
From Problem 5, if 1.5 x 10° km is used as the Earth-Sun distance, the absolute
error =2.48 x 10° km. 6930 km is much smaller than this error, so that the abso-
lute and relative errors incurred in using 1.5 x 10° km as the SMM-Sun distance
are the same as those of part (b) of Problem 5. If greater accuracy is required, it
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PROBLEM 9.

Solution:

will be necessary to use daily Ephemeris values such as those in the listing given in
Problem 7. In this event, it is still true that since 6930 km < 7 x 10’ km, the
relative error in approximating the SMM-Sun distance with the Earth-Sun

7 .10
1.5 x 108

The Astronomical Unit (AU), although useful for measuring distances within the
solar system, is too small to be convenient for distances to stars. We shall therefore
consider two other units of length used by astronomers. The first is called

the light-year.

distance < = 4.67 x 107, or about 0.005 percent.

The light-year is the distance traveled by light during one Earth year. To three sig-
nificant digits, the speed of light is 3.00 x 10° km/s. Find the length of the light-
year in km and in AU.

1 Earth year = 365.25 days = 365.25 X 24 x 60 X 60 seconds. In one year, light
travels 3.00 x 10° x 365.25 X 24 x 60 x 60 km = 9.47 x 10" km. To express this

1AU 4
T T s

distance in AU, 1 light-year = 9.47 x 10" km X
The parsec is the astronomical unit of distance that relates to observational mea-
surements. In order to define this unit, we must consider the fact that when we
observe the heavens, we have no direct perception of depth or distance. A useful
model developed to portray the heavens is the celestial sphere. In this model,
Earth is surrounded by an imaginary sphere with infinite radius. A coordinate
system, similar to latitude and longitude, is imposed on the celestial sphere by
projecting Earth’s rotation axis on the sphere to identify the celestial north pole
(CNP) and celestial south pole (CSP) as shown in Fig. 2.1. Since the radius of the
celestial sphere is infinite, all parallel lines point to the same spot on the sphere,
and so every line parallel to Earth’s rotation axis also points to the celestial north

and south poles.

The extension of Earth’s equatorial plane intersects the celestial sphere in a
great circle called the celestial equator. Now a system of small circles of declin-
ation (), comparable to latitude circles on Earth, is imagined on the celestial
sphere, and a system of great circles called right ascension (a) circles, comparable
to longitude, passing through the two poles, completes the coordinate system
(Fig. 2.2). '

Celestial north pole:

8= +90°

Fig. 2.1 Fig. 2.2

Celestial equator

Celestial equator: & = 0°
Csp f Vernal equinox

23
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Every star or celestial object can now have its position identified by the ordered
pair («, 3). Because Earth rotates with respect to the celestial sphere, the time of
observation must also be known in order to use the coordinate system. Differences
in the positions of two objects on the celestial sphere are expressed in terms of

the angle subtended at Earth by the arc joining these points.

As Earth revolves around the Sun, very distant stars show no discernible changes
‘ in position, but closer stars will show apparent motion with respect to the celes-
tial sphere when viewed from different points in Earth’s orbit, as shown in Fig. 2.3.
This apparent motion is called parallactic motion, and the change in position is
called the parallax angle. In this context, 1 parsec is defined as the distance at
which the radius of Earth’s orbit subtends an angle measuring 1 arc-second
(see Fig.2.4).

T T T T 66°00'05"

June

1%
o
o
i
=
=t

o—

]! 1

= L + 66°00'00"
12200m005.5 128000020

Fig. 2.3

PROBLEM 10. a. Find the length to three significant digits of 1 parsec in terms of AU, km,
and light-years.

Solution: If 6 is in radians, we have arc length = rf, where r is the distance expressed in the
same units as the arc length. In this case, arc length = radius of Earth’s
orbit = 1 AU.

_ ldegree m radians
3600 180 degrees

1
6 = 1second = 3600 degree

Since we want three significant digits in our answer, let us use w = 3.142 in
this computation:

3.142

9 = 3500 x 180

rad = 4.85 x 107°

‘ (We have omitted rad, since the radian is really dimensionless. (Problem 2,
this Chapter))
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Solution:

Then
L arc length  1AU

= = DS

In terms of km, » = 2.06 x 10° x 1.50 X 10*km = 3.09 x 10" km. Since 1 light-
e I v = o e P e e
y ' el ‘ 6.31 x 10°AU 0 8

years.

b. In general, if p is the parallax of a star and d its distance from Earth, then
1

p (in seconds of arc)

is 0.75 seconds, and the parallax of Sirius, one of the brightest stars in the north-

ern sky, is 0.38 seconds. Find the distances to these stars in parsecs and in km.

d (in parsecs) = The parallax of our nearest star, a Centauri,
For o Centauri,

_ _ ,
d= g 75 parsecs = 1.3 parsecs

Il

1.3 x 3.09 x 10" km

4.1 x 10® km.

Il

For Sirius,
d= e parsecs = 2.6 parsecs
0.38

=2.6 X 3.09 x 10® km
= 8.1 x 10¥ km.

The accurate measurement of time has been one of the most challenging prob-
lems in human history. We now tend to take for granted the civil time-keeping
system in general use. This system has evolved over many centuries and from

time to time has been substantially revised. The original definitions of day, month,
and year depended, respectively, on observations of the periodic motions of the
Earth, Moon, and Sun with respect to the celestial background as observed from
Earth. Since all these motions have fluctuations in their periods, it is not possible
to define a completely regular unit on which to base an accurate time measurement
in terms of the day, month, or year.

The first time-keeping instrument that did not depend on celestial observation
was the pendulum clock. It did, however, depend on the Earth’s gravity, which
varies with geographic location and the positions of the Sun and Moon. The
27f—><—6—l()><60 of a day, more recently has been
redefined in terms of the microwave emissions of certain atoms (e.g., quartz
crystals). This new definition provides a uniform standard with which to measure
intervals of time.

second, originally defined as

25
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PROBLEM 11.

Solution:

Solution:

Solution:

a. One of the serious problems of the old nonuniform time units was the accumu-
lation of error. It might seem that an accuracy of 1 second a day (a possible rela-
tive error of 241—><(36X—60 or about 1 X 107%) would be sufficient for most tech-
nical or scientific purposes. Show that an error of 1 second a day could result in

an error of 1.1 X 10* km in the position of the Earth in its orbit after only 1 year.
(Assume Earth’s orbit is circular with a radius of 1.5 x 10°km.)

In one year the error could be 365 seconds. Earth moves through an angle of

2 . . 2 . .
e 60 - 60 radians in one second, or 24 X 60 X 60 radians in 365 sec-

onds. The length of arc that subtends this angle in a circle of radius 1.5 x 10® km is
27

= — 8 e e 4
s =rb 1.5 % 10 X24><6()><6() 1.1 x 10* km.

b. The rropical year is defined as the time difference between successive vernal
equinoxes—in other words, the time it takes Earth to complete one revolution
around the Sun. This time does not have a simple relationship to Earth’s rotation
period (the day). In fact, it turns out that to the nearest second one tropical year is
365 days, 5 hours, 48 minutes, 46 seconds. Show that the current system of

adding an extra day to each calendar year that is a multiple of 4 but not a multiple
of 100 (leap years) serves to give each calendar year an integral number of days
and also keeps the seasons constant with respect to the calendar.

If a calendar year has 365 days, the excess time in a tropical year is S h 48 m 46 s, not
quite 1/4 day. Multiplying this excess by 4,4 X (5h48m46s) =23h15m4s,
almost 1 day. If we add 1 extra day each 4 years, we will create a deficit of

24h — (23h 15m4s) = 44 m 56 s for each leap year. In each 100 years, there are
25 years that are multiples of 4; however, after 24 leap years, the deficit will accu-
mulate to 24 X (44 m S6s) = 17 h 58 m 24 s, almost 3/4 day. This will almost
balance the excess accumulation for the remaining 4 years of the century, so that
years that are multiples of 100 should not be leap years. It is clear that further
juggling will be necessary, since things never balance exactly.

c. For some computations in astronomy and space science, it is necessary to have
an absolute time that is a continuous count of the number of time units from

some arbitrary reference. The universally accepted standard is the Julian Day Cal-
endar, a continuous count of the number of days since 12:00 noon on 1 January
4713 B.C. This curious starting date was actually chosen in A.D. 1582 by consid-
ering the cycle that is the least common multiple of the 28-year solar cycle (the
interval required for all dates to recur on the same day of the week), the 19-year
lunar cycle (the interval containing an integral number of lunar months), and the
15-year indiction (the tax period introduced by the Roman emperor Constantine
in A.D. 313). The year 4713 B.C. was the most recent date prior to 1582 when
these cycles coincided, and it had the added advantage of predating the ecclesiasti-
cally approved date of Creation, 4 October 4004 B.C. How long is the Julian day
cycle, and when is the next year when all three of the cycles used in its creation
will coincide?

The least common multiple of 28, 19, and 15 is their product, since these numbers
have no prime factors in common. 28 X 19 x 15 = 7980, so the next year the
cycles coincide will be (—4713) + 7980, or A.D. 3267.
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Solution:

d. A clever computer algorithm for converting calendar dates to Julian days was
developed using FORTRAN integer arithmetic (H. F. Fliegel and T. C. Van
Flandern, “A Machine Algorithm for Processing Calendar Dates,” Communica-
tions of the ACM 11 [1968]: 657). In FORTRAN integer arithmetic, multiplica-
tion and division are performed left to right in the order of occurrence, and the
absolute value of each result is truncated to the next lower integer value after
each operation, so that both 2/12 and —2/12 become 0. If / is the year, J the nu-
meric order value of the month, and K the day of the month, then the

algorithm is

IJD = K — 32075 + 1461 * (I + 4800 + (J—14)/12)/4

+ 367 * (J—2—(J—14)/12*12)/12 — 3 = (({ + 4900 + (/—14)/12)/100)/4.
The calendar date 25 December 1981 is JD 2 444 964. Use a hand calculator and
this algorithm to find the Julian dates of the launch of Explorer I (the first U.S.
satellite placed into orbit), Greenwich Mean Time 1 February 1958 (Eastern

Standard Time January 31, 1958), and the launch of the seventh Space Shuttle on
18 June 1983 (carrying the first American female astronaut, Sally Ride, into orbit).

For 1 February 1958, 1 = 1958,J =2, K = 1.

JD = 1 — 32075 + 1461%(1958+4800+(2—14)/12)/4

Il

+367+(2—2—(2—14)/12%12)/12 — 3+((1958+4900+(2—14)/12)/100)/4

1 — 32075 + 1461%6757/4 + 367+(1*12)/12 — 3%(6857/100)/4

1 — 32075 + 2467994 + 367 — 51 = 2436 236

Il

For 18 June 1983, = 1983,/ = 6, K = 18.

Il

JD = 18 — 32075 + 1461+(1983+4800+ (6—14)/12)/4
+ 367%(6—2—(6—14)/12%12)/12 — 3*( (1983+4900+(6—14)/12)/100/4

18 — 32075 + 1461+6783/4 + 367+4/12 — 3%68/4

Il

= 18 — 32075 + 2477 490 + 122 — 51 = 2 445 504.

A large number of satellites require ground processing of spacecraft sensor data
to determine the spacecraft attitude (i.e., the spacecraft’s orientation). Examples
of sensors used are Sun sensors, Earth sensors, and star sensors. These sensors
provide information, usually a measured angle, concerning the spacecraft pointing
relative to a celestial body (e.g., Sun, Earth, or star).

Telemetry signals from these sensors are converted on the spacecraft to digital
counts and transmitted to ground stations. The digital count representation of a
sensor output can be easily converted to meaningful measurements and units on
the ground. However, telemetry signals are frequently subject to random inter-
ference, or “‘noise.” To understand the meaning of noise, one has only to tune
into a weak channel on a television set; the ‘“‘snow’’ that is seen is a visual repre-
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PROBLEM 12.

Solution:

B e B FH
'-7,;‘ u;["'vt"r' SRS

sentation of noise present in an electronic signal. Noise consists of random sig-
nals superimposed on valid electronic signals from any electronic device. An
in-depth understanding of the cause, effect, and reduction of noise is not neces-
sary in the context of this problem. However, it should be understood that noise
can sufficiently corrupt any electronic signal to the extent that making use of,
and properly interpreting, the true signal can be difficult.

This problem applies to spacecraft instruments and sensors. A number of methods
have been developed to smooth data and remove the effects of noise. In the next
problem, we examine one such method, called the running average.

Given an ordered set of numbers, X;, ] = 1,2, ... M, asmoothed set of numbers can
be found by averaging each number with the n preceding and the n following
numbers. Symbolically,

o 1 jtn
Xj—2n+l 2 X,

Jj—n
where n is typically a small whole number (n = 5).

For example, for the data in Table 2.1, if n = 2, then

x;:%(xs+xh+x7+xx+x9)

2%(11+14+18+19+16):15.6.

a. Compute the smoothed values of the data in Table 2.1 forn = 1 and n

Il
&

We present a computer program in BASIC, along with the run for this task.

Table 2.1
Spacecraft Sensor Data

Sample Unsmoothed  Sample Unsmoothed
No. (j) Value (X)) No. (j)  Value (X))

1 2 11 20
2 7 12 20
3 10 13 18
4 6 14 19
5} 11 15 20
6 14 16 20
7 18 17 17
8 19 18 19
9 16 19 18
10 17 20 16
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10
20

100
110
120
130
140
150
160
170
180
190
200
210
220

230
240

245

250

260

270

ORIGINAL PAGE 19
OF POOR QUALITY

REM SMOOTHING FUNCTION

REM ROUNDED TO 2 DECIMAL PLA
CES

"DATA 24711046911 4+144184+1941
6+17,204+20,18,19,20,20,17,19
118,16

M = 20

DIM X(M)ye DIM YiM): DIM Z(M)

FOR J'= 1 TO M

READ X(J)

NEXT J

FOR Ji.= 2 TO 19

WY = (X0 oe e R(a) 4 il
#4)) 4B

Y& =100 RSV T+ 04099 X CJ)
Yt 72 10

NEXT J

FOR J ='°3 10 18

At G E e e o GG B B B

WD) et KD B ok K e 208

5
Zhi o= 10"% (RCJ) & 050507 (J)
Zh /3310
NEXT J
PRINT "Jd% 3z
Sl ey
HTAB 20: PRINT "X'(J) N=1"3:
HTAB 30: PRINT "X“(J) sN=2"

HTAB 10: PRINT "

PRINES (8 iy IHTAB, 102 S PRI NT %
(1)
PRINT "'2"3: HTAB 10: PRINT X

(2)3: HTAB "20: PRINT. Y (2)
FOR: Ji= a3 TOV 18

280
285
290
300
310

320

o
=
=

VONOUDWN - o

PRINT Jj:
HTAB 20:

)3 s

HTAB 30:
NEXT J
PRINT %1

X(19)3i: HTAB 20:

PRINT "20"3: HTAB 10:

X(J)

END
X(J)
2
7 6.3
10 Tty
6 9
11 10.3
14 14.3
18 17
19 177
16 1743
157, 17 o7
20 19
20 19.3
18 19
19 19
20 19.7
20 19
17 18.7
19 18
18 1747
i8

9"5: HTAB 10:

X(J) N=1

HTAB 10:

PRINT X(J
PRINT Y(J)3i
PRINT 2(J)

PRINT

1)

PRINT

K7(J) yN=2

7.2
9.6
11.8
13.6
15.6
16.8
18
18.4
18.2
18.8
19.4
19.4
18.8
18
18.8
18

b. If the data points are plotted and joined by line segments, we get a graph
demonstrating data fluctuations. Normally, what is of interest is the underlying
smooth curve (hence the term smoothing) for this process. Compare the graphs of

the unsmoothed data and the smoothed data for n

= 2.

Fig. 2.5 shows the plot of the unsmoothed data (solid line) and the data smoothed
with n = 2 (broken line).

Fig. 2.5

Sample # (j)
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Solution:

c. This smoothing technique cannot be used blindly. It is possible to disguise the
true nature of the data by smoothing. Modify the program of part (a) to smooth
the data in Table 2.2 and compare the graphs of the unsmoothed data and the
smoothed data for some value of n, for instance, 5. How has the smoothing tech-
nique disguised the true nature of the data?

The following program incorporates a subroutine to smooth the data of Table 2.2 for
values of n from 1 through 5. The graph of the unsmoothed data and the

smoothed values for n = 5 are displayed in Fig. 2.6. We see that the original data
had a sinusoidal form, with the noise appearing as some slight departures from

the smooth curve. The smoothed data are still sinusoidal, but the amplitude has
been drastically reduced. It is evident, if the program with these data is run, that
each increase in n reduces the amplitude more than the previous n.

Table 2.2
J X; J X; J X;
1 20,5836 35 25,7612 59 12,4995
2 24,4349 36 24,8147 70 10,5644
3 28,8846 37 18,7918 71 9,0069
4 27,1585 38 14,7649 W 9,1803
5 275732 39 16k 220 73 9.,1452
5 24,4361 40 8.6446 74 14,1750
7 21,2117 41 7.0319 75 17,2637
8 14,6925 4z 8.,G6086 76 21,4681
9 2,55872 43 11,4900 77 25,4627
10 8,0117 44 15,3886 78 27,0909
11 8,1619 45 18,4432 79 28,1451
12 9.,0843 46 20,6217 80 25,6367
13 10,1741 47 24,7681 81 24,9373
14 [yl 48 27,5421 82 20,6476
il 17,2274 49 28,1035 83 15,7963
16 20,9153 50 27,3259 84 2,2591
17 25,4725 51 23,4475 85 8.,2834
18 26,1255 5 20,5059 86 9.,4840
19 28,2650 53 16,3552 87 8.5730
20 26,0446 54 10,8868 88 10,2066
21 23,3059 5 10,0192 89 14,0093
29 19,1884 56 8,2502 90 18,7170
23 I5W7zdz 57 9,5464 91 22,6785
24 12,9586 58 9,1521 9z 25,6463
s 10,1285 59 13,9209 93 26,2984
26 . 2595 BO 18,6782 94 27,7386
27 8.6186 61 23,2414 as 27,3292
28 9,5012 B2 76,3716 96 23,7517
29 15,3659 B3 28,5849 97 19,3016
30 18,2059 B4 28,9297 98 15,3903
31 22,4038 B5 25,8980 99 12,9370
32 25,5969 66 22,4440 100 10,0038
33 28,4748 57 21,3365
34 29,2417 58 15,3698
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ORIGINAL PAGE IS
OF POOR QUALITY

10 REM SMOOTHING FUNCTION 2 140 READ X(J)
20 REM USING SUBROUTINE 150  NEXT
100 DATA 20.,5:24.4+28.9:27.2,27 160 “FOR N "= 1 TO"S
6:124,44921,2+14.7+12,6,8.0 170 GOSuUB 1000
101 DATA 8.2:9.1,10,2415.2+17.2 180 NEXT N
120,9925,5+92641:+28,3126.0 190 END
102 DATA 23:3418.2+135.791340010 1000 REM SMOOTHING SUBROUTINE
+14+8,3+8.6,9.,5+15.,4,18.,2 1010 PRINT “J" "X ()" 32 HTAB 283
103 DATA 22,4:25.6:28,5929.2,25 PRINT "X‘(J) N="3N
+8124,8,18.,8,14,8,10.8:8.,6 10207 FOR L= 1 “TOCEN 3 19
104 DATA 7.,0+8.6:+11.5,15.4+18.4 1030° PRINT. LyX¢I)
120,6124.8,27.5928.1+27.3 1040 NEXT I
105 DATA 23.4,20.5,16.,4,10,9,10 1050 FOR J = (N + 1) TO (M - N)
«04+8:3:9,5+9.2,13.9,18,7 1060 SUM = 0O
106 DATA 23,2+2644,28.,5:28.9,25 1070 FBR I = G = NJ_BO (U +-N)
v9922.4+21.3+15.,4,12,4410.6 1080 SUM = SUM + X(I)
107 DATA 9,04+9.2:9.14+14.2+17.3, 1090 NEXT I
21,5+25.5+27,1,28,1425.,6 1100 Yed) = SUM [/ (Z ¥ W A4 1)
108 DATA 24,9:20.6:15,8+12:3,+8., 1110.Y% = 2100 % (Y(J) + 0D.,008)2Y¢(
3:9.5+8,6+510:2,14,04+18.,7 st N s 100
109 DATA 22.7:25.6+326:3127.7,+27 1120 PRINT J»X(J) Y ()
«3¢23,8+189¢3+15:4212,9,10.0 1130 * NEXT . J
110 M = 100 1140 FORCT = oMo N = L) TGN
120 DIM X (M): DIM Y(M): DIM Z(M) 1150 PRINT I:X(I)
1160 NEXT I
190 SEBREGE= 1 D M 1170 RETURN
Counts
36.000
. . o0 ‘-
1. -. .o. . — . .'7 .9 .- o. .. 0.
Plot of smoothed () and unsmoothed (*) data derived from Table 2.
N =5 for smoothed data
0.000 Sample Number 100.000
Fig. 2.6

We end this chapter with a problem that shows how a classical mathematical model
is modified so that it can be used to determine the period of rotation of a planet.
The modification uses some of the principles of scientific accuracy discussed ear-
lier in this chapter and illustrates the use of successive iterations to refine a com-

putation, easily done by computer.

The procedure we develop has been used to determine the rotation period of
Saturn more accurately than earlier estimates by using observations of variations
in the planet’s radio emissions made by Voyager 1. Since this planet has neither a
solid surface nor any distinctive atmospheric features comparable to Jupiter’s
Great Red Spot, what is computed is the period of rotation of the magnetic field of
the planet. Because of the complex nature of the radio emission data, we illus-
trate the method by computing the rotation period of Jupiter rather than Saturn.
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PROBLEM 13.

Solution:

Solution:

We begin with a question that is essentially the same as the familiar ““How much
time elapses between successive alignments of the hands of the clock?”” but that
sets the stage for the actual problem we wish to solve.

a. Jupiter rotates on its axis once every 9.92 hours, and its moon Io revolves around
Jupiter once every 42.5 hours. What is the length of time between consecutive
passages of o over a particular spot on Jupiter?

Let R, and R, be the angular rotation and revolution rates for Jupiter
and lo respectively.

360 )

Then R, = 903 = 36.3 degrees/hour
, 360 ‘

and R, = s 8.47 degrees/hour.

In Fig. 2.7, Io moves from A to B while the point S on Jupiter makes a complete
revolution and then goes on to S’ to be under lo again. So we must find the time 7
such that R,7 — 360 = R,T. Using the values above for R; and R;, we get

the following:

2
t]

3637 —360=847T
36.3T — 847 T = 360

(27.8) T = 360

(%)
(o))

T = —% = 12.9 hours

2

To see how this classic problem might be altered, suppose we don’t know Jupiter’s
rotation period (or that we don’t know it very accurately). As it approached
Jupiter, the Voyager was able to make observations of the times at which Jupiter’s
Great Red Spot appeared in the center of the disc as viewed from Voyager. We
want to use these observations to determine Jupiter’s rotation period.

b. Voyager’s trajectory as it approached Jupiter is illustrated in Fig. 2.8. Modify
the results of part (a) to find Jupiter’s period if the Red Spot is observed to be in
the center at time ; = 2 h 25 min = 1 min, when Voyager’s distance from Jupiter is
D, = 7.70 x 10’ km, and again at time £, = 16 h 24 min = 1 min, when Voyager’s
distance from Jupiter is D, = 4.72 x 10° km and Voyager has moved through an
angle « = 147.2° with respect to Jupiter’s center between these two observations.

If Voyager’s trajectory were circular and if Jupiter’s period is P, then the analysis of
part (a) can be applied with R, = 360/P and R,T = «. We now have (360/P)T —
360 = a, which transforms into 7 = P + aP /360. However, the trajectory is not
circular, so we must take into account the different lengths of time it takes for

light to travel from Jupiter to Voyager. Since light travels at a speed ¢ (¢ = 3.00 x

E Di = D; P
10° km/s), the corrected equationis 7' — —IT— — g
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3
db Jupiter rotation Ch Jupiter rotation
|
I

Fig. 2.7 Fig. 2.8

For the data provided, we note that

D, — D, (7.70 — 4.47) x 10° S
c 3.00 x 10° )

= 1 second.

Since the uncertainty (possible error) is one minute in both time measurements,

we see that in this case there is no point in making this correction. The equation

_ abP _a s
T=P+ 360 P(l + 360) may be solved for P:
p— T
AN
360
Substituting the data,
T=t—14
_ (1624 _ 525
olile =
= (16.40 — 2.42) h, or 13.98 hours.
a 147.2
L4360~ 1 360
= 1.409, so
_13.98
P=T409 1
= 9.92 hours

Voyager trajectory
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c¢. The observations of the radio emissions from Saturn were much more erratic.

A series of measurements t,, f,, . . ., ty of the times of certain characteristic peak
emissions was recorded, but it was not known how many complete rotations had

"? 'T-'- o . o D] - Dz
Wskually occurred between each consecutive pair (¢, ;). The correction ———

is not negligible in this case, and other corrections not discussed here also apply.
Under these circumstances the equation relating 7, P, and a becomes impossible
to solve directly. However, the iterative approach illustrated next can be used,
and by applying it to the case of part (b), we can show that the same solution is
obtained. We let 1, = t; + P. Since P is Jupiter’s period, ,. can be considered a
“corrected time™ in the sense that if Voyager’s revolution period around Jupiter
matched Jupiter’s rotation period, we would have « = 0, P = T, and t,. = ©,.
Substituting T = t, — t;, and P = 1, — f, for the first term on the right in the equa-

. aP aP
=P +— s — b = he—h ot o
tion T 360 wegeth —t = b — I 360
Solving for t,., we get o, = 1, — —2160' Since this equation still contains P, the

quantity we are seeking, we begin by making an initial guess (£) at its value; this
is used together with the known values of #, and « to find a first estimate of £,
which we may call t,.;. Next we let P, = t,,; — ¢; and repeat the evaluation of £, to
get be; then P, = o — ;. This process is repeated until the difference P, — F,_; is
less than 1 min = 0.02 h, the possible error of our time observation. This pro-
cedure is easily done by computer (and in this case may even be done using a
hand calculator). Write a computer program to perform this iteration.

We display a program written in BASIC.

JLIST JRUN
M TC(M) P(M)
10 REM JUPITER PERIOD ITERATION it 10,682 8.265
2 13.02 10,603

20 REM ROUNDED TO 3 DECIMAL PLA 3 12,064 9.647

EES 4 12,455 10,038
BLHOSTRIE= SR 5 d 157 S 12,285 9.878
120 T2 = 16.4 6 12,36 9,943
130 P(0) = 72" - 71 7 12,334 9,917
135 BRINT “Mia: HTAB B2 VERINT T 8 12,345 9.928

COM) " y"P (M) AFTER 8 ITERATIONS: JUPITER’S
140 FOR M = 1 TO 30 PERIOD IS FOUND TO BE 9.928
1308 MECM= - T2 a7 20 POM - 19

/ 360
180 ERICMA= S T C (M) =T 1
164 X% = 1000 * P(M):X(M) = X% /

1000
166 Y2 =" 1000 % FCIMYN Oz YL ./

1000
170 PRINT Mi: HTAB G: PRINT Y (M)

P X (M)

180 SIFESABS R (M) — PUME~d)) &
+017 THEN 200

196 NEXT M

200  PRINT YAFTER “5Mi" TTERATION
S, JUPITER’S PERIOD IS FOUND
TOSBE " 57 (I)

210 END
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PROBLEM 1.

Solution:

Solution:

PROBLEM 2.

Solution:

niques can be found in most of the examples in this volume. The problems

selected for this chapter are those that do not also draw heavily on other
mathematical areas. Several use the distance, time, and rate relationship, and
others use direct and inverse variation. Some approximation techniques that are
frequently used to solve otherwise intractable problems are also included.

Algebra is the language of quantitative science. As such, its methods and tech-

During 1982, the planets Jupiter and Saturn were in conjunction, so that they
appeared very close to each other in the night sky. In the problem that follows, we
see how frequently such an event happens.

The planets Earth, Jupiter, Saturn, and Uranus revolve around the Sun approxi-
mately once every 1, 12, 30, and 84 years respectively.

a. How often will Jupiter and Saturn appear close to each other in the night sky
as seen from Earth?

The time required must be a multiple of both 12 years and 30 years. This event will
recur at intervals of the least common multiple of 12 and 30, or 60 years.

b. How often will Jupiter, Saturn, and Uranus all appear in the same area in the
night sky as seen from Earth?

Now we need the least common multiple of 12, 30, and 84, which is 420 years.

In addition to the electromagnetic radiation that we know as heat and light, the
Sun continuously sends out charged particles known as the solar plasma (see also
Chapter 10, Problem 1). From time to time, there is a strong burst of highly ener-
getic particles called a solar flare from a small source in the Sun’s atmosphere.

When a solar flare occurs on the Sun, it can send out a blast wave that travels
through interplanetary space at a speed of 3 x 10° km/h.

a. How long would it take for such a solar flare blast wave to get to Earth where
it could be detected by a satellite in orbit? (Recall from the preceding chapter
that for a satellite close enough to Earth, we can use the Earth-Sun distance of
1.5 x 10° km for the satellite-Sun distance.)

Since distance = speed X time,

1.5 x 10°km = (3 x 10°km/h) (time).
, 1.5 x 10 )
Then time = ~>>— h = 0.5 X 10?h,
cn time 3 % loh

or 50 h (about two days).
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Solution:

PROBLEM 3.

Solution:

b. When such a solar flare is detected, it is interesting to study the source. Since
the Sun is rotating, we must determine how far the source has turned between the
emission and the detection of a solar flare. Because the Sun is a dense gas rather
than a solid body, it does not have a uniform rotation rate; on the average the Sun
makes one complete revolution in 25.4 days. How many degrees would it rotate
(on the average) during the time the blast wave traveled to the orbiting satellite?

Since the Sun rotates 360° in 25.4 days, it rotates 5356—(31°/day, SO

the solar rotation rate = 14.2 °/day

14.2° v 1 day
day 24 hour

0.59 °/h.

In 50 hours. the Sun rotates SO h x 0.59°/h = 29.5°.

A scientific capsule was carried aloft by a rocket and released at the peak of the
rocket’s trajectory. The rocket had an average vertical speed of 920 km an hour
from liftoff to release of the capsule. The capsule made a controlled descent with
an average vertical speed of 390 km an hour and landed 68 minutes after the
rocket was launched. Find the maximum height reached by the rocket.

Let ¢ be the time of ascent in hours. Then % — tis the time of descent, and since the

distances of ascent and descent are equal,

9201 = 300 (2 )

60
=442 — 390 ¢
1310+ = 442
t =0.34h.

The maximum height = distance of ascent = (920 km/h) (0.34 h) = 310 km.

Italian scientist Galileo Galilei’s introduction of the telescope for studying the
heavens brought about a revolutionary change in astronomy. It is expected that a
comparable leap in our ability to examine the universe will take place when the
Hubble Space Telescope is launched into orbit by the Space Shuttle in 1986.
Because the space telescope will be above Earth’s atmosphere, it will be able to
see much fainter objects than can now be seen by the best Earth-based telescopes.
As we shall see in the next problem, this means that astronomers will soon be
able to make observations and to compare them with the cosmological theories
about the age and formation of the universe.
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PROBLEM 4.

Solution:

Solution:

Solution:

a. The Space Telescope will be able to see stars and galaxies whose brightness is
only % of the faintest objects now observable using ground-based telescopes. The

brightness of a point source such as a star varies inversely as the square of its
distance from the observer. How much farther into the universe will the space
telescope be able to see compared to ground-based telescopes?

Let dg be the distance from Earth of the faintest object visible to a ground-based
telescope, and let B¢ be the brightness of this object. Let d be the distance of an

object of brightness 30 Bg. Since brightness varies inversely as the square of dis-

3 i —l_ L i L — T d:
tance, Bg = Py and £ Bo dz.Then B. de = 50

sod* = 50dé ord = 7.1ds.
The Space Telescope will see about seven times farther.

b. Because of the time it takes for light to travel from distant stars and galaxies,
we see them as they were some time ago—the photons that reach us from an object
that is 1 parsec away were actually emitted 3.26 years ago (see Chapter 2, Prob-
lem 12). The best ground-based telescopes can see objects about 10” parsecs from
our solar system. How long ago were the photons emitted that we now see when
we observe such an object?

Since 10” parsecs = 3.26 x 10’ light-years, the photons were emitted 3.26 x 10’
years ago.

c. When the Space Telescope begins its observations, how far back in time will it
see stars and galaxies?

Since it will see 7.1 times farther, it will see photons that were emitted 7.1 X
3.26 x 10” = 2.2 x 10" years ago. (If, as suggested by cosmological theory, the
age of the universe is between 10 and 20 billion years, the space telescope should
enable us to see stars and galaxies in the earliest stages of formation.)

Pioneer 10 was launched on 3 March 1972. It outlived and outperformed the fond-
est dreams of its creators. Designed to last at least 21 months, it has continued
well beyond the accomplishment of its mission. On 25 April 1983, its distance from
Earth equaled that of Pluto, and the following June it crossed Neptune’s orbit

and left the solar system. (Although Pluto is normally the outermost planet in the
solar system, it has a highly eccentric orbit and will be closer to the Sun than
Neptune will be for the next seventeen years.) To add to its record of endurance,
most of Pioneer 10’s instruments are still working, and Earth-based tracking
stations were still receiving signals bearing information about the behavior of the
Sun’s extended atmosphere as of this writing.
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PROBLEM 5.

Solution:

Solution:

a. How long did Pioneer 10’s radio signals, traveling at the speed of light
(3.00 x 10° km/s) take to reach Earth from the distance of Pluto in April 1983
(4.58 x 10° km)?

distance _ 4.58 X 10° 5
speed 3.00 x 10°

time =

1.53 x 10*s

Il

_ 1.53 x 10
= 73600 h, or 4.25 hours

b. What was Pioneer 10’s average speed, in km/h, if it traveled about
4.58 x 10° km between 3 March 1972 and 25 April 1983?

From 3 March 1972 to 3 March 1983 there were 11 years, of which 2 were leap
years, and from 3 March 1983 to 25 April there were another 53 days. The time
for Pioneer 10 to travel that distance was (365 x 11) + 2 + 53 = 4070 days, or
4070 x 24 = 97 680 hours.

4.58 x 10’

53— 1g¢ km/h = 4.69 x 10*km/h

Average speed =

(We note that the average speed over this period is less than the average speed
over the 21-month period of Problem 6 in Chapter 2.)

The time required for an orbiting satellite to make one complete revolution of
Earth is called its period. The length of the period depends on the location of the
observer making the measurement.

Suppose the observer is located far out in space and views the satellite against
the background of fixed stars. The period measured in this manner is called the
sidereal period of revolution, or the period in relation to the stars. Note that the
rotation of Earth does not affect the sidereal period. Now suppose that the
observer is standing on Earth’s equator. A satellite is overhead in low Earth
orbit moving directly eastward. When the satellite has made one complete transit
of its orbit, it will not yet be overhead for the observer because the rotation of
Earth will have carried the observer a distance eastward. The satellite must travel
an additional distance to again be over the observer’s head. The observer mea-
sures the period of the satellite as the time elapsing between successive passes
directly overhead. This period is called the synodic period of revolution, or the
period between successive conjunctions, and it takes into account the

rotation of Earth.

Spacecraft usually orbit in the same easterly direction as Earth’s rotation: this is
called a posigrade orbit. All U.S. manned spaceflights have been launched in posi-
grade orbits to take advantage of the extra velocity given to the spacecraft by
Earth’s rotation. In this case, the synodic period is greater than the sidereal period.

If the direction of orbiting is westerly, or opposite to Earth’s rotation, the orbit is
said to be retrograde. In this case, an Earth observer would meet the satellite
before it made one complete revolution around Earth, and the synodic period

would be less than the sidereal period.
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PROBLEM 6.

Solution:

Solution:

In Chapter 9, Problem 7, we show that the sidereal period (in seconds) can be
computed by the formula P = 2wV a4’/ GM, where a is the average radius of orbit
from the center of the body about which the satellite is in motion, G is the constant
of universal gravitation, and M is the mass of the body about which the

satellite orbits.

a. Find the sidereal period of the High Energy Astronomy Observatory (HEAO)
satellites, which have an average altitude above Earth of 430 km. The radius of
the Earth averages 6370 km, and the value of the product GM for Earth is

3.99 x 10" m*/sec’.

The radius of orbit is the sum of the radius of Earth and the average altitude
of the satellite:

a = 6370 km + 430 km = 6.80 x 10° m.
Then the sidereal period in seconds is

(6.80 X 10°)°

P =201V 559 % 107
P = (6.284) (6.80) 2’—3% x 102 = 5580's

The sidereal period then is 93.0 minutes, or 1.55 hours.

b. Compute the synodic period of the HEAO satellites, given that their orbits
are posigrade.

In Fig. 3.1, let x be the position of the observer (assumed on the equator) when the
satellite is directly overhead and let y be the observer’s position one synodic
period later, due to the rotation of Earth.

Q= O Fig. 3.1
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PROBLEM 7.

Solution:

If we can find the angular distance A, we shall be able to use it to find the synodic
period. In one synodic period the observer traveled an angular distance 4, and

the satellite traveled an angular distance 360° + A, measuring the angular distance
in degrees. The observer travels 360° in 24 hours, or 1°in 24/360 hours, so it

takes the observer (24/360) (A) hours to travel the angular distance A. From part
(a), the sidereal period is 1.55 hours. It takes the satellite 1.55/360 hours to

travel 1°, and the time that elapses between successive viewings over the observer

. 1555
is therefore <3_66> (360 + A) hours.

da sy (360 + A)

360 360
24 A = (1.55)(360) + 1.55 A

22.45 A = 558

A = 24.9 degrees

123) (360 + 24.9) = 1.6 hours = 99.6 minutes. We

observe that the synodic period is 6.6 minutes longer than the sidereal period.

So the synodic period is (

The statement has been made that Newton’s derivation of his inverse-square law of
gravity from Kepler’s third law is among the most important calculations ever
performed in the history of science. Kepler’s third law, based on observation
rather than theory, states that the squares of the periods of any two planets are

to each other as the cubes of their average distances from the Sun. Derive Newton’s

law from Kepler’s law.

If we represent the periods of any two planets by rand 7 and their distances from the
Sun by r and R, respectively, then

W
[2 r3
or
, t'R°
T2 = —-.

Assuming that we know the values of r and r, and substituting a constant C for

s :
the quantity — the equation can be reduced to
=

2= CR®,

Thus if we know either T or R for the second planet, we can solve for the unknown
quantity. In this problem, however, we wish to use this equation to discover a

new relationship, Newton’s law of gravitation. For a body moving in a circular
path, the acceleration toward the center is
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Substituting in F = ma,

So

N

F-mv. _m (@)

r R

Because 77 = CR’, we find by substitution in the previous equation that

41’m 1
JO= X —
C R
_ K
R

That s, the force holding a planet in orbit falls off as the square of the distance R
to the Sun. Newton expressed the value of K and obtained his law of universal
gravitation:

i

r?

This law applies not only to the attraction between a planet and the Sun but also
to the attraction between any two bodies. G is the constant of universal gravita-
tion, M and m are the masses of the two bodies, and r is the distance between
their centers of mass.

In solving the next problem, two special techniques are needed. One is a fre-

quently used approximation based on the fact that (1 + x) (1 —x) = 1 — x2.

If x is small (for example, suppose x = 0.01), then x” is very much smaller (for
=0.01, x* = 0.0001), and in this case it is well within the limits of experimental

errortouse (1 + x) (1 —x) =1, or = 1 — x. The other is the substitution

10y
of a single variable for the ratio of two other variable names.
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PROBLEM 8.

Solution:

From Kepler’s third law, we see that the farther a planet is located from the

Sun, the longer its period is. Suppose Earth orbits the Sun in a circle of radius

r(r = 1.5 x 10*km) with a period T (T = 1 year). Then any spacecraft SC (see
Fig. 3.2) orbiting the Sun in the same plane but at some greater distance (r + a)
will have a period larger than 7, and if it starts from a point on the extension of the
Earth-Sun line (as shown), it will gradually lag farther and farther behind.

Spacecraft

SC Earth Sun
O a O T O
Fig. 3.2

However, the situation changes if a is sufficiently small, because then the gravity of
Earth, in the configuration shown, adds appreciably to that of the Sun. For the
force holding the spacecraft in orbit to balance the combined pull of the Earth and
Sun, the spacecraft must move a bit faster. In fact, there is a particular value for

a so that the speeding up of the spacecraft is just sufficient to allow it to keep up
with Earth. If that happens, then the spacecraft orbits the Sun in a circle of

radius (r + a), but with period T like Earth. What is the value of a that allows

such an orbit?

Let m., me, My be the masses of the Sun, Earth, and spacecraft, respectively. For
Earth’s motion, we have, as in the foregoing problem,

_ mgn.\ MV M (Zwr >2
F= G< r’ ) Ty o \T
or
Gmy 2 \2
r? - (7) 1)

For the motion of the spacecraft, similar analysis gives

2

MeMe | Mgy MV my (2m(r +a)\? 2m \f
F= ( e ) = == < ) = Ml o ( ) '
G a’ (r+a? r+a r+a T mr + a) L

. ... Gmg, [2m\?
Canceling m,. and substituting r’;n = (—}T—) from (1):

me 1 1. rda 1l+¥(aln
m, a®  (r + a)? 7 2
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m a . . . .
Now let u = ;e and z = e Notice that z is very small, since a is much less than r.

S

After these substitutions,

5 5 2
a (r'Fa)t re

u 1 i
o>

)

If we divide each denominator by r? and again use z = %

u 1

e
2 (1+2) :

Although this equation contains only « and z, it still has no simple solution, so we
now make two approximations in the second term on the left:

(Ti;i(l—z)z=l-22+zzil—221

% + (1 = 2z) = 1 + z, simplifying to% =3z,0rz*=

W

Now the quantity u = % =3x107%s0z>=10"%0rz = 1072

Since 2 =%,a =rx102=1.5x 10°km.

The position we have found in this problem is an equilibrium point of the Sun-
Earth system. A similar analysis can be used to show the existence of another
equilibrium point on the sunward side of Earth, and in fact there are five such
equilibrium points in all for any two-body gravitational system. These are called
Lagrangian points in honor of the mathematician who first proposed their exist-
ence (Fig. 3.3). It has been suggested that two of the Lagrangian points of the
Earth-Moon system should be considered as possible locations for future

space colonies.

Ly
Sun

Center of mass of
Sun-Earth system

path of Earth’s orbit
7

\ 7
Py 2 Ls
L, S it o
=~ = =
Earth —/ L, The five Lagrangian points
L, L,, L3, Ly, Ls
Fig. 3.3
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PROBLEM 9.

Solution:

Solution:

The ISEE-3 satellite (third International Sun-Earth Explorer), a joint venture of
NASA and the European Space Agency, was launched in August 1978 and
placed in a “‘halo orbit” around the Lagrangian equilibrium point between Earth
and the Sun. In this orbit, it monitored the Sun’s emissions that approach
Earth—without the interference that would result if the satellite were actually at
the equilibrium point where its radio antenna would have to point directly at the
Sun. After this mission was successfully completed in 1982, ISEE-3’s orbit and
direction were changed to conduct an exploratory survey of Earth’s magneto-
tail. In December 1983, the satellite was redirected toward the comet Giacobini-
Zinner and renamed International Cometary Explorer (ICE) in keeping with its
new mission. It reached this comet in September 1985.

a. If M is the mass of Earth, then the mass of the Moon is 0.012M. The radii of Earth
and the Moon are 6370 and 1740 km, respectively. Use these facts with Newton’s
law of universal gravitation to find the ratio of surface gravity on the Moon to
surface gravity on Earth.

If we place a mass m at the surface of Earth, then the gravitational attraction
between the mass and Earth is

~ GMm
L= (6370)*"

Similarly, the attraction between the Moon and an equal mass m placed on its
surface is

~ G(0.012M)m
" (1740)

The ratio of F, to E is

E, _ 0.012  (6370)°
E  (1740) 1

. 4.87 x 10°
3.03 x 10°

1
=

: ’ el .
That is, gravity at the surface of the Moon is 6 as great as gravity at the surface of

Earth.
b. If a man weighs 180 pounds on Earth, what would he weigh on the Moon?
Weight on the Moon would be as follows:

é x 180 1b = 30 Ib

47



Chapter Three

PROBLEM 10.

Solution:
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In some future space stations it is expected that artificial gravity will be created by
rotation of all or part of the station. Gas jets or other propulsion devices can be
used to control the rate of rotation of the station. As with the centrifuge, the
rotation will produce a force against the astronaut that cannot be distinguished
from gravity. If r is the distance of a point in the station from the center of rota-
tion, then the velocity of the point for N rotations a second is

v = 2mrN.
As noted in Problem 7,
a :$.orv = Var.
Setting the two velocities equal,
2wrN = Var
N? = arw :
(2m)°r-
1 fa
S 2T Nr

If ris given in meters, then a is the acceleration in meters per second per second.
By controlling the values of » and N, any desired artificial gravity can be produced.

a. Compute the rotational rate needed if the radius of the station is 30 m and a
gravity equal to one-half the gravity of Earth is desired. (Use g = 980 cm per

second per second, or 9.8 m per second per second.)

1

a= 2(9.8 mi/s2)i="47
1 |47
N=5: N30
_V0.157
21
=0.063

The rate of rotation must be 0.063 rotation per second or 60 x 0.063 = 3.8 rota-
tions per minute.
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b. Compute the needed rotational rate if the radius of the station is 150 m and
Earth surface gravity is desired.

Solution: N = 5 150

=0.04

The rate of rotation must be 0.04 rotation per second or 2.4 rotations per minute.

PROBLEM 11. a. The force of gravitation with which one body attracts another is inversely propor-

tional to the square of the distance between them. Consequently, the pull of the
Moon on the oceans is greater on one side of Earth than on the other. This gravita-
tional imbalance produces tides. The Sun affects the tides similarly. Because the
Sun exerts an enormously greater pull on Earth than the Moon does, one might
think that the Sun would influence the tides more than the Moon. Just the oppo-

site is true. How can this be?

Let N be the point on Earth nearest the Moon and let F be the point on Earth

farthest from the Moon. We shall assume that the tide-raising force of the Moon

is in some sense measured by the difference in the pull of the Moon on unit masses

located at N and F (see Fig. 3.4). If r is the distance from the center of the Moon

to N and if D, is the diameter of Earth, then the forces acting at N and F are,

respectively ol and S
Tt (r + D.)?

versal gravitational constant. The difference between these two forces is the tide-

raising force, which we shall call F. Then,

Solution:

. M being the mass of the Moon and G the uni-

D. . . S .
Because —- is very small, this expression is approximately

2GMD,
= 3 .
r
Earth
Moon
O N F
| |
| |
_ r { i
- > D¢ re——0

Fig. 3.4
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~lution:

Thus we would expect the tidal effect to be inversely proportional to the cube of
the distance, whereas gravity is inversely proportional to the square of the dis-
tance. Because the distance from Earth to the Sun is enormously greater than the
distance to the Moon, it is not surprising that the Moon provides the dominant
tide-raising force. Local horizontal components of this force cause the tides to roll
in and roll out (i.e., the horizontal movement of the water).

b. From the foregoing, we can compare the tide-raising forces of the Moon and
the Sun. If we use the subscript m for variables that apply to the Moon and s for
those that apply to the Sun, the ratio

2GM,D./r}  M,r}
2GM.D.[r} Mg’

F
K,

The mass and distance of the Moon and Sun are as follows:

M., = 73.5 x 10*'kg; M,

1.99 x 10"kg

Fm = 3.84 X 10°%km; r,= 1.5 X 10°%km

tm

ko

Compute

Boo 1305 X 10 (15 < 1057 243

= =22 X 1055 =22
F,  1.99 x 10° x (3.84 x 10°) 113 -

So the tidal force exerted by the Moon is more than double that exerted by the Sun
on the Earth.
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PROBLEM 1.

Solution:

prediction of flight paths to the design of equipment, make use of geo-

metric analysis. Geometry enters into many of the problems of the preceding
and subsequent chapters. Most of the problems in this chapter fall into three
categories: those involving areas and volumes of plane and solid figures, those that
use similarity, and those that use properties of circles or spheres. The Sun-Earth-
Moon system happens to exhibit a striking geometric coincidence, which we exam-
ine in the first problem.

Geometry is fundamental to space science. A multitude of activities, from the

To an observer on Earth, the Sun and the Moon subtend almost the same angle in
the sky. The average angle is 0.52 degrees for the Moon and 0.53 degrees for the
Sun. Depending on the particular location in its elliptic orbit, the Moon’s angle
ranges between 0.49° and 0.55°, whereas that of the Sun ranges between 0.52°

and 0.54°. This is why the Moon sometimes completely blocks the Sun, producing
a total solar eclipse.

a. If the mean lunar and solar distances are respectively 3.8 x 10° km and
1.5 x 10° km, what is the ratio of the solar diameter to the lunar diameter. and
what is the ratio of the solar volume to the lunar volume?

Sun

Moon

o—— (D Dy

RM

Fig. 4.1

The geometry of the eclipse is illustrated in Fig. 4.1. Since the angle at 0 is the same
for both the large and the small triangles and the triangles are isosceles, they

must be similar. Letting Ry; and Rs denote the lunar and solar distances,
respectively, and Dy and Dg the lunar and solar diameters, we have

Ds _Rs _1.5x10°

= = - = 390.
Dy Ry 3.8 x10°

If Vyy and Vs are the lunar and solar volumes, respectively,

Yo Wmbd2)_(Ds

= : = (390)° = 5.9 x 107,
Vi (4/3)m(Dw/2)’ DM) : )
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Solution:

PROBLEM 2.

Solution:

b. Since the angle at 0 is very small, we can approximate the lunar or solar
diameter by the arc length of the circle with radius Ry or Rs where this arc length
subtends the angle at 0. Use the relation s = r6 (6 in radians) to determine the
actual values of Dy and Ds.

o o mrad _
0.52° = 0.52° X T30° 0.0091 rad
Dy = Ry (0.0091) = 3.8 X 10° x 0.0091 = 3.5 X 10° km
0.53° = 0.0092 rad, by the same conversion just shown

Dy

Il

R (0.0092) = 1.5 x 10* x 0.0092 = 1.4 X 10°km
(Note: The reader may prefer to avoid the approximation by using the tangent

0  lunar radius _  solar radius

function—that is, tan —

= ; = - : note, however, that
2 lunar distance solar distance

to two significant digits the result is the same.)

All the energy to meet needs on Earth, whether the energy is natural or synthetic,
ultimately comes or has come from the Sun in the form of electromagnetic radi-
ation. There has been much interest recently in using this radiant source of energy
directly to supplement or supplant the existing power sources. Further, since our
Sun is but one of many stars, it is of interest to compare its energy output with that

of other celestial objects.

One measure of the total energy radiated by the Sun received at a unit area of
the Earth’s surface is called the solar constant (where radiation is summed over all

wavelengths of the electromagnetic spectrum).

A radiometer flown on the Solar Maximum Mission (SMM) is able to measure
accurately the intensity of solar radiation. SMM is a satellite in orbit around
Earth at low altitude, and its measurements can be used to provide a good estimate

of the solar constant.

The radiometer on SMM admits solar radiation through a small aperture whose
area is 0.50 cm?, and it measures the rate of entrance of this radiation accurately.
The spacecraft attitude (pointing direction) is controlled so that the entrance aper-
ture is perpendicular to the line of sight between SMM and the Sun.

a. Over one observation period, radiation entered the radiometer at the rate of
0.069 watts. What is the value of the solar constant, S, as determined by this
observation? (Use an extra significant digit in the answer, since this quantity will
be used in subsequent calculations.)

_ 0.069 watts

0E0enE 0.138 watts/cm”

S

n
n
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Solution:

Solution:

Solution:

b. Itis generally assumed that the Sun emits radiation uniformly in all directions.
If this is true, calculate the total rate of energy radiation by the Sun.

Since the radiation energy rate measurement contains only two significant digits, we
can use the Earth-Sun distance of 1.5 x 10* km as SMM’s distance from the Sun
(see Chapter 2, Problem 8). If the Sun emits uniformly in all directions, the total
rate of energy radiation from the Sun is the product of the solar constant and the
area of the sphere with radius 1.5 X 10°km, or 1.5 x 10" c¢m.

Letting P = total rate of energy radiation from the Sun,
P = (S)(4nr?)
= (0.138 watts/cm?) (4m) (1.5 X 10” cm)?
= 3.9 X 10” watts.

c¢. The foregoing are typical values. Variations of approximately 0.05 percent have
been observed at other times. How much do such variations affect S and P?

AS =0.05 x 1072 X 0.138 = 6.9 x 10~ watts/cm?
AP =0.05 x 1072 X 3.9 x 10* = 2.0 X 10* watts

(Note: These variations occur on a short time scale (day to day) and are thought to
average to zero over a long time scale. A 0.05-percent systematic variation in

solar radiation over a time scale of years could produce significant climate changes
on Earth.)

d. In 1981, SMM lost pointing accuracy because of a component failure on the
spacecraft. Suppose that the orientation of the spacecraft changed so that the

line perpendicular (the normal) to the entrance aperture made an angle of 30° with
respect to the Sun-SMM line, rather than being parallel to it. By how much

would the radiation entering the radiometer be changed?

For simplicity, let us assume the aperture is a square, ABCD (see Fig. 4.2), with side
length a, where & = 0.50 cm®. Looking at this square edge-on with AD as the
tilted edge, if DE is paralle] to the direction of solar radiation incidence and AE is
perpendicular to DE, the aperture is effectively a rectangle whose dimensions

are AB and AE. We label the angles a, 8, vy, 6 as shown. Since (Za, 2) and

(£, £6) are complementary pairs of angles, and since £ = 2y, we have

46 = La = 30° s0 AADE is similar to the standard 30°-60°-90° triangle, and the
ratios % - ¥ and C—% are equal, giving AE = —\%gAD = 0.866 a. The area of
the effective aperture is therefore (0.866 a) (a) = 0.866 &*. In other words, the
radiometer will register only 87 percent of what it did before losing

pointing control.

Fig. 4.2
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PROBLEM 3.

Solution:

PROBLEM 4.

Solution:

(We observe that the result holds for apertures that are not square. )

As observed in part (c) of the foregoing problem, one of the interesting outcomes
of modern advances in the precision with which it is now possible to make mea-
surements of the solar constant is that this quantity is in fact not really a constant!

Solar cells convert the energy of sunlight directly into electrical energy. For each
square centimeter of solar cell in direct overhead sunlight, about 0.01 watt of
electrical power is available. A solar cell in the shape of a regular hexagon is
required to deliver 15 watts. Find the minimum length of a side.

The total area required is 15 watts/0.01 watt per square centimeter, or 1500 square
centimeters. The regular hexagon can be partitioned into six congruent equi-
lateral triangles, each with an area of 1500/6 = 250 square centimeters (see

Fig. 4.3).

Fig. 4.3

The area A of any equilateral triangle with side s may be expressed

A = 1 (base) (altitude) = s Vs . Solving for s, we have
2 202 4
_ [4A _ /4(250) cm’ s
5§ = \/g— V=173 - V578 cm” = 24 cm.

Solar cells are made in various shapes to use most of the lateral area of satellites. A
certain circular solar cell with radius r will produce 5 watts. Two equivalent solar
cells are made, one being a square with side s and the other an equilateral triangle
with side p. Find r in terms of p and also in terms of s.

For the solar cells to have equivalent outputs, their areas must be equal. Thus for the
circle and square, we have

Acirclc = A\quurc: ™t =8
S
r = —F7=
V
= 0.564 5.

For the circle and equilateral triangle, we have

m

TSP N

= 0.371 p.
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PROBLEM 5.

Solution:
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The largest component of the prelaunch Space Shuttle configuration is the external
tank, which serves as the ““gas tank™ for the Orbiter—it contains the propellants
used by the main engines. Approximately 8.5 minutes after launch, when most of
the propellants have been used, the external tank is jettisoned. It is the only

major part of the Space Shuttle that is not reused.

Fig 4.4(a) shows the launch configuration with the back view of the Orbiter, and
Fig. 4.4(b) shows the side view. Fig. 4.5(a), (b), and (c) show the liquid hydrogen
tank, the intertank, and the liquid oxygen tank, respectively. The intertank serves
as a mechanical connector between the liquid oxygen and liquid hydrogen tanks,
and contains the upper dome of the liquid hydrogen tank and the lower dome of
the liquid oxygen tank.

a. Using the dimensions provided in the diagrams, estimate the volume of each of
the tanks by dividing the tanks into shapes whose volumes are easy to compute.

Nose Cup7
¥

A Fig. 4.4
Liquid

Oxygen
Tank

L/\H
Intertank W 47.0 meters

|

Liquid
Hydrogen
Tank

8.4 meters

(a) (b)

Fig. 4.5

|
|
L

29.6 meters 16.3 meters

(a) (b) ()

(This is one possible solution.) The liquid hydrogen tank has the shape of a cylinder
with ellipsoidal caps on each end. Since the formula for the volume of a hemi-
sphere is better known, let us approximate the domes as hemispheres. Now the
total length of the tank is given as 29.6 m, and the diameter as 8.4 m; our
approximation, then, consists of two hemispheres (or a single sphere) of radius

4.2 m and a cylinder of radius 4.2 m and length 29.6 — 8.4 =21.2 m. The resulting
volume estimate is




Geometry

Solution:

Solution:

gm‘ g %(4.2)3 +m(4.2)2(21.2)

=310+ 1170, or 1480 m°.

The liquid oxygen tank can be approximated by joining a hemisphere of radius

4.2 m, a cylinder of radius 4.2 m and length about 4 m, and a cone with base radius
4.2 m and height 8.1 m. (This should probably underestimate the volume, since
the tapered section is larger than a cone.) Using this dissection, we find that the
volume estimate is

2 . ]
== Tt Aot =T B

3 3

I

Wb

(4.2) + 7w (4.2) (4) + %‘n(4.2)2(8.1)

155 + 222+ 150
=50 m

I

b. The actual volumes of the hydrogen and oxygen tanks, respectively, to the
nearest m® are 1450 m® and 541 m®. What are the absolute and relative errors of
the estimates in (a)? (See Chapter 2 for a discussion of these errors.)

For the hydrogen tank:

Absolute error = |estimate — true value| = 1480 — 1450| = 30 m’

absolute error ;0500 30 1000 =2.1%

NIRRT true value 1450

For the oxygen tank:
Absolute error = |527 — 541 = 14 m®

Relativelerior 31411 x 100% = 2.6%

c. The outside of the external tank is covered with a multilayered thermal protec-
tive coating to withstand the extreme temperature variations expected during
prelaunch, launch, and early flight. Although there are variations in the exact type
of material and the thickness at various locations on the tank, the average thick-
ness is 2.5 cm. Estimate the total volume of the insulation material on the tank,
assuming a uniform thickness of 2.5 cm.

A simple way to get such an estimate is to model the external tank as three sections:
the lowest section is approximately a hemisphere of radius 4.2 m; the middle
section is an open cylinder of radius 4.2 m and height (47.0 — 4.2 —8.1) = 34.7 m;
the top part is approximately a cone of base radius 4.2 m and height 8.1 m. The
volume of insulation is then close to the product of the surface area of this figure
and the thickness 2.5 cm, or 0.025 m.

The surface area of an open hemisphere of radius r is 2mr*; the lateral area of a
cylinder of radius r and length A is 27rh; the lateral area of a cone of radius r and
slant height s is mrs—in this case we know the vertical height A rather than the slant

height, but s, h, and r are related by s = r> + i, or s = Vr® + K (see Fig. 4.6).
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The surface area, then, is
2m (4.2)2 + 2w (4.2) 34.7) + w (4.2 V(4.2)* + (8.1)
=111+916 + 120
= 1147 m*.
The volume, then, is (1147) (.025) =29 m’.

h

~
RS

Q

Fig. 4.6 Fig. 4.7

PROBLEM 6. A spacecraft is at P, at an altitude h above Earth’s surface, as pictured in Fig. 4.7.
The distance to the horizon is d, and r is the radius of Earth.
a. Derive an equation for d in terms of  and 4.

Solution:  Because PA is tangent to the circle at A, angle PAO is a right angle. Then

r’*+d*=(r +h)’
d*=(r + hy = r?
=2rh + h*

d=\N2rh + h?

b. The satellite Atmospheric Explorer 3 (AE-3) has an elliptic orbit with apogee
height 4300 km and perigee height 150 km. Find the distance from AE-3 to the
horizon at apogee and perigee. The radius of Earth, to two significant figures,
is 6400 km.

Solution: At apogee: At perigee:
d= \/2(640()) (4300) + (4300)* d= \/2(64()0) (150) + (150)°
=100V/5504 + 1849 =10V'19200 + 225
= 8600 km = 1400 km
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Solution:

c. If A is small compared to r, the formula for d found in part (a) can be sim-
plified by dropping the h° term, leaving d = V/2rh . Redo the calculations of part
(a) using the simplified formula and compute the relative errors of

these approximations.

At apogee:
dapprox. = V'2(6400) (4300) = 7400 km
: _ 8600 — 7400 _ _
relative error = 8600 0.14=14%
At perigee:

Aupprox. = V2(6400) (150) = 1400 km

This agrees with the previous result, and the relative error is 0.

d. For what range of values of 4 is the approximation d =V 2rh accurate to two
significant digits?

We need to know the range of values of A that satisfy the following condition:

V2rh + h2<V2rh +0.01V2rh

V2rh + h*<1.01V2rh

2rh + h* < (1.01)*(2rh) = 2rh (1.0201)
h*<0.04rh
h <0.04r

For r = 6400 km, we need & <256 km.
From the foregoing, we see that under certain conditions it is possible to substitute
a simple formula for a complicated one without affecting the results. Great care
must be taken, of course, to ensure that the conditions needed for such sim-
plification are in fact satisfied. Another useful result based on two such approxi-

mations is developed in Problem 8. But first we consider the basic geometry of
photographic scale.
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PROBLEM 7.

Solution:

Solution:

Solution:

In Fig. 4.8, the flight path of an airplane or satellite carrying a camera with its lens at

Cis shown by the arrow. The camera is at a height / above the ground and has
focal length f.

]

B A

Fig. 4.8

a. If PQ is the image on the film of line AB on the ground, find the scale of the
picture, the ratio A_% assuming the picture is taken vertically (PA is perpendic-
ular to both the film and the ground).

Since triangles ABC and PQC are similar, %% :‘IZ_}.

b. If fand H are in the same units, the ratio é is called a 1-1 scale factor. Deter-

mine the 1-1 scale factor for a photograph taken at a height of 30 km with a
camera having a 150 mm focal length.

£ _150x10°

5 el Y

c. If the photograph of part (a) shows an image of a straight road that measures
1.25 mm on the film, how long is the actual road?

Let L be the actual length of the road in meters.

image length  1.25x 10°*

= =5x107°
actual length L
2 =3 )
= w m=0.25%x10"m=250m
S0

d. With current technology, it is possible to make measurements on photographs
to the nearest micron (10°° m). What is the smallest actual length whose image
can be measured on the photograph of part (b)? (This is called the resolution of
the photograph.)
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Solution:

PROBLEM 8.

Solution:

Let S be the smallest actual length in meters. Then

105

T = S5
SO
SX 1045 =10°
1
and S—§m=0.2m.

The curvature of Earth can introduce distortion in a photograph. We need some
new terminology to discuss the correction for such distortion. The point on Earth
vertically below the camera is called the nadir and its image on the film is called the
photograph nadir point. Because the photograph is flat, the image of any point
except the nadir will be closer to the photograph nadir point than it would be if
Earth were also flat. In the next problem, we develop a formula to correct for this.

The geometry of the photographic correction for Earth’s curvature is shown in
Fig. 4.9. The image of the point P is a distance r from the photograph nadir point
Q, fis the focal length of the camera, and H is its height when the picture was
taken. In order to get a “‘corrected’ picture, we need to place the image at P’, in
the plane of the tangent to the nadir, N. This means we need to compute Ar so that
the corrected image is a distance r + Ar from Q.

Q.,f,,/Ar .
Fig. 4.9
¢
(D
H
p /
hi N
B
X T\
J! NE =PE =R

3
a. Show that Ar = —212—} where R is the radius of Earth.

Let & be the vertical displacement of P’ with respect to P and let x be the horizontal
displacement of P’ (also of P) with respect to N. We see from the diagram in Fig. 4.9
that x and £ are related. If 7 is the foot of the perpendicular from P to NE,
where E is the center of Earth, then APTE is a right triangle with PE = R,
PT = x, and TE = R — h. By the Pythagorean theorem, R* = x*+ (R — h)’, s0
R*=x?>+ R>—2Rh + h*, giving x* = 2Rh — h*. Since h is very small compared to
R, we shall use the approximation x* = 2Rh.
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There are two pairs of similar triangles in the diagram.

For the inner pair,

f_H+h
r X
or
fx=(H+h)r,
or
fx = Hr + hr.
For the outer pair,
_fr _H
r AR X
or
fx =H(r + Ar),
or
fx =Hr + HAr.

Comparing the two expressions for fx, we see that hr = HAr. Then Ar =— h =

T~

rx T - .
HOR " Now we need another approximation in order to eliminate x. In the relation

fx = Hr + hr, since h is small compared to H, we have fx = Hr, so x* = %
r Her e

Making this last substitution, we have Ar = SHR 2 " 2RF

b. Find the correction Ar and the resulting » + Ar for a photographic image taken
at a height of 92 km with a camera having a focal length of 132 mm if » measures
65.24 mm. Recall that R = 6400 km.

Solution: Since H and R are in km and r and fare in mm, if we do no unit conversions, we shall
be computing Ar in mm.

(92)(65.24)?

- : =,
"=12) (6400) (1322 -1l mm

r+Ar=65.24+0.11 =65.35 mm
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PROBLEM 9.

The final problems in this chapter deal with some aspects of planning for the future
construction of such large commercial space structures as the antenna system in
the illustration on page 47. It is planned that the materials for the antenna system
will be carried up and the actual construction done in orbit. This frees the con-
struction of two considerations: (1) the rigidity that would be required for such a
structure to break away from Earth’s gravity and (2) the strength needed to
survive transportation into orbit intact. It is, of course, desirable to keep to a
minimum the number of trips needed to transport the components, and consid-
erable effort has gone into the development of materials that are strong and light-
weight and that maintain their properties over a wide range of temperatures. Let
us see how successful the effort to minimize the number of trips has been.

The Space Shuttle can carry 29 500 kg of payload into orbit in a cargo bay that is
basically a cylinder having a length of 18.3 m and a diameter of 4.6 m. The
structure in the illustration has 91 antennas, each a paraboloidal cap 20 m in
diameter and 2 m deep. The material for the antennas is a knitted metallic mesh
weighing 60 g/m”’.

The plan for the truss assembly that holds the antennas is shown in Fig. 4.10. A
promising material for the columns is graphite-epoxy, which combines excellent
strength and stiffness with light weight, having a density of 1522 kg/m’. The truss
assembly shown has 252 copies of the basic repeating element, with each repeat-
ing element consisting of a tetrahedron having nine complete struts as shown in
Fig. 4.10(c). The struts themselves are hollow columns 10.4 m long with radius

3.8 cm and thickness 0.57 mm as shown in Fig. 11.

_ )
— (c) Basic Repeating Element
l

(a) Repeating Tetrahedrons

No. of Columns per
Repeating Element

Lower cover—3
Core—3
Upper cover—3

Fig. 4.10. Tetrahedral
truss construction. (b) Complete Tetrahedral Truss
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Solution:

Solution:

AVAAVAAVA
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NOAOALANL

Fig. 4.11 Fig. 4.12

a. How many Shuttle trips would be necessary to get the weight of these elements
(the metallic mesh for the antennas and the columns for the struts) into orbit?

We shall get an approximation for the weight of metallic mesh by treating the
antennas as though they were circles of radius 10 m. (In Chapter 10, ““Calculus,”
we shall get a more accurate result.) If we have 91 circles of radius 10 m, the total
area will be (91) (7) (10)* m*, and the total weight of metallic mesh will be

(91) () (10)*(60) g = 1.7 x 10’ kg. The volume of material in each column can be
approximated by (2mr) (t) (€) = 27 (3.8 X 107?) (0.57 x 107%) (10.4) m?, so the

total weight of the columns is (252) (9) (6.28) (3.8) (0.57) (10.4) (107%) (1522) kg =
4.9 x 10° kg. The total weight of these materials is (1.7 + 4.9) x 10° kg = 6.6 x 10°

3
kg. 269'6;;11003kkg =0.224, or about 22 percent of the Shuttle’s weight capacity.

b. We see that the Shuttle can easily carry this weight on a single trip. Now we
must consider volume: will the materials fit in the available space? Assume that
the metallic mesh is 7.5 mm thick and sufficiently flexible to pack into any shape.

The cargo bay’s cylindrical volume is given by wR?L = w(2.3)?(18.3) m*=3.0 x 102
m’. We have already found that the total area of metallic mesh is (91) (1007) m’
=2.9 x 10* m?, so the total volume of mesh is (2.9 X 10*) (7.5 X 107%) m®

=22 10" m?:

This leaves (3.0 — 2.2) x 10° m’ = 80 m’ for the columns (and all the remaining
hardware needed for assembly, which we are ignoring here).

Since the columns are 10.4 m long, they cannot be placed end to end in the 18.3 m
long cargo bay. We must consider how to stack them most efficiently. If we
consider the cross section of the stack, we see that we need to find the most
efficient way to pack circles in a plane. It is intuitively reasonable (although the
proof is far from simple) that the maximum efficiency is achieved when each circle
is tangent to six others, as illustrated in Fig. 4.12. From the diagram we see that
each hexagon has sides of length 2r, where r is the radius of the circle, and there-
fore has area 6 (1/2) (2r) (\/Br) =6V3r2 Also, each hexagon contains three com-
plete circles whose total area is 3 (mr?). So the fraction of area occupied by circles is

RE ™
=——=0.907.
6V3r2 2V3
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PROBLEM 10.

Solution:

Since the fraction of space occupied at the boundary will be smaller than this, let
us assume that the columns pack into the cargo bay so that 12 percent of the space
is empty. This means that the columns will pack into a cross-sectional area equal
to 1/0.88 of their total cross-sectional area. We recall that there were 252 X 9 =
2268 columns, each having radius 3.8 cm and therefore a cross-sectional area of
m(0.038)> m*> = 4.5 x 10~° m’. The total cross-sectional area needed, then, is
2268 x 4.5 x 107
0.88
occupy (11.7) (10.4) m*> = 1.2 x 10° m® of space. However, there was only 80 m” of
space left after calculating the volume of the metallic mesh, so it will take more
than one trip to handle the volume, even though the weight is not a problem. Our
success in reducing the weight now places the focus of our attention on volume.

m?’ = 11.7 m?. Since the columns are 10.4 m long, they will

In order to fit more columns into a smaller space, the designers realized that they
should investigate the possibility of tapering the columns and then “‘nesting”’

them for transportation, like a stack of paper cups. Fig. 4.13 illustrates the idea.
Under this scheme, each column would be made of two tapered half-columns,

with their wider openings joined; half-columns could then be nested for stowage in
the cargo bay. Tapered columns have been developed and tested for strength. If

r, is the radius of the smaller end and r; the radius of the larger end, tests showed

; e g
that an optimum taper ratio 1sr—l = 0.41 and that such a tapered column is actu-
2

ally stronger; it can carry about 30 percent more load before buckling than an
untapered column of the same weight.

—

B
(a) Assembled Column (b) Nested Half-Column Elements

Fig. 4.13. Tapered Column Concept

a. If the mean radius is to be 3.8 cm as before, and Uiy 0.4, find the values of r,

)

and r,.
+n . . o
We have r1—2—r = 3.8 and r, = 0.4 r,. Clearing the fraction and substituting, we get
0.4 I +r,= 7.6
1.4 o = 7.6
=16 _
Bi= e = 5.4cm

r=1(0.4)(5.4)=2.2cm.
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b. Fig. 4.14(a) and (b) display the geometry of the tube nesting, where d; = 2 - r,,
d, = 2 - r,, € is the length of a half-column, and A is the tube-nesting separation.

Show that A = P— and find an expression in terms of € and A for the number of
20 0]

half-columns that will fit into one stack the length of the Space Shuttle cargo

bay.

Solution: In Fig. 4.14(b), if we insert the horizontal line shown and letter some key points as
indicated (Fig. 4.15), AABE’ and ABCD are similar, so AB/BC = BE'/CD. We
have AB = A, BC = ¢, CD = r, — r;, and we shall approximate BE' by BE = .
Then, with this approximation and the proportion above, A = %
2 N

From Fig. 4.14(a), we have one half-column of length € on the left end, in which
%—q . (INT signifies the
greater integer which is less than or equal to the number in the square bracket.)
Now the number of half-columns that will fit into one stackisN =1 +n =1 +

18:3/= 6]
INT [——A :

we nest n additional half-columns, where n = INT [

c. For the truss assembly of Problem 9, determine the volume occupied by the
strut columns if they are made of half-columns as described here and nested for
stowing in the cargo bay.

Solution: We have ¢ = half-column length = (1/2)(10.4) = 5.2 m

6 _(0.57 x 107)(5.2)

A= ‘m =9 x 1072
An CA—2a)RiE m
N=1+ INTF&}‘_S_;Z] =1+ INT[145.6] = 1 + 145 = 146.
9 x 1072
We had a total of 2268 columns, or 4536 half-columns, so this means there will be
INT {il?éé] = 31 stacks, and one additional shorter stack.

Each stack is 18.3 m long (although one stack will be shorter) and has a radius of
5.4 cm, so its volume is 7 (0.054)*(18.3) = 0.17 m’. The total volume of the 32
stacks is a little less than 32 X 0.17 = 5.4 m’.

By the analysis in the last part of Problem 9, these stacks will take up ——05 '848 =

6.2 m’ of space in the cargo bay, and now the materials for the truss assembly and
the antenna “‘dishes’ can all be transported in a single Shuttle trip.
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I

Fig. 4.14

Fig. 4.15
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PROBLEM 1.

Solution:

the space program. In this chapter we examine the role of probability in

menu planning, in some aspects of the transmission and coding of spacecraft
observations, and in the control of equipment reliability. Some elementary
examples of the use of statistics are illustrated in the final two problems.

P robability theory and statistical techniques make important contributions to

The early manned spaceflights revealed much about the body’s response to pro-
longed weightlessness. An interesting and varied food supply was thus needed to
guard against a loss of appetite in the face of what was learned. The food supply
for the crew of the Space Shuttle is carefully planned to compensate for the high
energy requirements (averaging 3000 calories per person per day) of working in a
frictionless environment and the body’s tendency to lose essential minerals (such
as potassium, calcium, and nitrogen) in microgravity. The Space Shuttle food and
beverage list contains more than a hundred individual items. A typical day’s

menu might be the following:

Meal [ Meal {1 Meal 111

Peaches Frankfurters Shrimp cocktail

Beef patty Turkey tetrazzini Beef steak
Scrambled eggs Bread (2) Rice pilaf

Bran flakes Bananas Broccoli au gratin
Cocoa Almond crunch bar Fruit cocktail

Orange drink Apple drink (2) Butterscotch pudding

Grape drink

In general, each meal I1I contains a main dish, a vegetable, and two desserts, with
an appetizer included every other day. The food list contains 10 items classified

as main dishes (M), 8 vegetable dishes (V), 13 desserts (D), and 3 appetizers (A).
How many different menu combinations are possible in each of the first six days
of flight, assuming no dish is repeated?

The number of choices is tabulated below:

Day A M Vv D1 D2 Number of combinations
1 3 10 8 13 12 37 440
2 — 9 7 11 10 6930
3 2 8 6 9 8 6912
4 — 7 5 7 6 1 470
S 1 6 4 5 4 480
6 — S 3 3 2 90
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PROBLEM 2.

Solution:

PROBLEM 3.

Solution:

The electronic telemetry system aboard a spacecraft transmits the data of spacecraft
motion in the x, y, and z directions. The system consists of three motion sensors,

a signal conditioner, and a transmitter. The probability of failure for each motion
sensor and for the signal conditioner is 0.0001. The probability of failure for the
transmitter is 0.001. Assuming that component failures are independent events
and that the failure of any component will render the telemetry system inopera-
tive, compute the probability of a spacecraft telemetry success.

The probability of success is equal to 1 minus the probability of failure. Therefore,
the probability of success for each sensor and the signal conditioner is

P =1-0.0001 = 0.9999.

Similarly, the probability of success for the transmitter is

P =1-0.001 =0.999.

The probability of success for the telemetry system is the product of probabilities
of success for each component; that is,

P = (0.9999)*(0.999) = 0.9986.

The signals transmitted by a spacecraft telemetry system are in the form of pulses
imposed on a radio beam, which can be interpreted as binary digits. For exam-
ple, the signal fragment ... [ L] L ... willbereadas ...010110..., since the
presence of a pulse is read as 1 and the absence of a pulse as 0. Each possible
representation of a 0 or a 1 is called a “bit.”

For a variety of reasons, equipment errors can cause a () to be transmitted instead
of a 1, or vice versa. As a result, error-detecting codes have been developed to
improve data reliability. All such codes are based on transmitting extra bits that
can be used to determine whether errors are present and even, for the more
sophisticated codes, where the errors are. Transmitting these extra bits, however,
means that fewer message-carrying bits can be sent in a given unit of time, and so
transmission reliability must be traded against transmission efficiency. Probability
theory plays an important part in weighing the trade-offs.

a) The telemetry system of a certain spacecraft has a probability of 1 percent of
transmitting an erroneous bit. One way to increase data reliability would be to
repeat each message bit three times. For example, ...010110. .. would become
...000111000111111000. . ., if no errors occur. If it is decided to interpret any

of the triplets 000, 001, 010, or 100 as 0 and any of the triplets 011, 101, 110, or 111
as 1, find the probability of error in the interpretation of a message bit,

assuming the transmission of each bit is independent.

A message bit will be interpreted erroneously if two or three errors have occurred in
the triplet. '

P(2 errors) = (g) (0.01)2(0.99) = 0.000297
P(3 errors) = (0.01)* = 0.000001

P(2 or 3 errors) = 0.000298 = (0.0003
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Solution:

We see that we can reduce the probability of a transmission error in a single bit
from 1 percent to 0.03 percent, but at a cost of sending three times as many bits
as are actually needed for the message. To put it a different way, the desired
message would be sent one-third as quickly.

b. More efficient error detection can be done with parity coding. In this method,

a “‘parity bit” is inserted after each string of message bits of a predetermined
length & so that the sum of the (k + 1) bits is either always even (even parity) or
always odd (odd parity). For example, if K = 4 and even parity is used, the message
110100101001 . . . will become 110110010110010. .. On receiving the trans-
mission signals, an error is detected if the sum of the appropriate five contiguous
digits is odd. If the probability of error in a single bit is 1 percent, find (i) the
probability of at least one error in the transmission of four sequential bits, and (ii)
the probability of an undetected error after using even-parity coding.

(i) The probability of an error occurring in at least one of the four bits is

1 — P(no errors in the 4 bits) = 1 — (0.99)*
=1-0.9606 =0.04, or 4 percent.

(ii) In each set of five bits under parity coding, if 1, 3, or 5 errors occur, the sum of
the binary digits will be odd and the error will be detected. If 2 or 4 digits are in
error, this will go undetected.

P(2 errors) = (g) (0.01)2(0.99)* = 0.00097

P(4 errors) = (7] (0.01)* (0.99) = 5 x 10°*

SO
P(undetected error) = P(2 or 4 errors) = 0.1 percent

By inserting a parity bit after each four message bits, we have reduced the trans-
mission efficiency to 80 percent of its possible maximum but have reduced the
probability of an undetected transmission error in each four-bit “‘word’” from 4
percent to 0.1 percent. However, when we do detect an error, parity coding does
not tell us which of the bits is erroneous. In Chapter 8, ““Matrix Algebra,” we
shall examine the Hamming Code, which not only detects a transmission error but
also tells which bit is wrong.
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PROBLEM 4.

Solution:

An aerospace consulting company is working on the design of a spacecraft system
composed of three main subsystems, A, B, and C. The reliability, or probability

of success, of each subsystem after three periods of operation is displayed in the
following table:

1 day 3.3 months 8.5 months
A 0.9997 0.8985 0.6910
B 1.0000 0.9386 0.7265
C 0.9961 0.9960 0.9959

These reliabilities have been rounded to four significant digits. The 1.0000 in the
first column means that the likelihood of the failure of subsystem B during the
first day of operation is so remote that more than four significant digits are needed
to indicate it.

a. Consider the case of the series system shown in Fig. 5.1. If any one (or more)

of the subsystems A, B, or C fails, the entire system will fail. If £ is the total
probability of success of the system, find P, for each of the three time periods.

=]

Fig. 5.1

For the first 24 hours,
F = PsPgPc
=(0.9997) (1.0000) (0.9961)
=0.9958.
For a period of 3.3 months,
F, = PaPgPc
= (0.8985) (0.9386) (0.9960)
= 0.8400.
For a period of 8.5 months,
F, = PaPgPc
= (0.6910) (0.7265) (0.9959)

=0.5000.
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Solution:

Solution:

b. The system shown in Fig. 5.2 will succeed if B succeeds and at least one of A
and C succeeds. Find the probability of success for this system for the 3.3-month
time period.

Fig. 5.2 Fig. 5.3

The probability of success for the portion of the system containing A and C is
Pa.c=1— P(both A and C fail)

=1-(0.1015) (0.0040) = 0.9996.
Then
Py = PgPa.c=(0.9386) (0.9996) = 0.9382.

c. For more complicated systems, the use of conditional probability is helpful. If
an event A can be divided into n mutually exclusive subevents By, B,, ... B, (n
finite), then P(A) = P(A|B,) P(B,) + P(A|B;) P(B,) + ... + P(A|B,) P(B,), where
the notation P(X|Y) designates the conditional probability of X given that Y has
occurred.

Consider the system in Fig. 5.3, where the 3.3-month reliabilities of the sub-
systems A, B, C are the same as before and the 3.3-month reliabilities of D and
E are 0.9216 and 0.9542, respectively. Use conditional probability to find the
reliability (i .e., P) of this system for the 3.3-month period.
This system will succeed if any one of the paths (A,D), (B,D), (B.E), or
(C,E) succeeds. We can choose B as our focus and assert that
P, = P(system succeeds|B succeeds) Py + P(system succeeds|B fails) (1 — Pg). Now
we evaluate P(system succeeds|B succeeds). If the system succeeds given that B
succeeds, this means that at least one of D and E would have succeeded, so
P (system succeeds|B succeeds) =1 — (1 — Pp) (1 — Pr)
:1—(1—PD—PE+PDPE)
= PD a5 PE - PDP[:
=(0.9216) + (0.9542) — (0.9216) (0.9542)

=0.9964.
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PROBLEM 5.

Solution:

Next we evaluate P(system succeeds|B fails). For the system to succeed in view of
the failure of B means that at least one of the paths (A,D) or (C,E) must have

succeeded, so
P (system succeeds|B fails) =1 — (1 — PAPp) (1 — PcFe)
= P\Pp + PcP: — PPy PcP:

= (0.8985) (0.9216) + (0.9960) (0.9542)
~ (0.8985) (0.9216) (0.9960) (0.9542)

=0.9915

P.=(0.9964)F; + (0.9915) (1 — Fs)
=(0.9964) (0.9386) + (0.9915) (0.0614)
=(.9961.

In Problem 4a we saw that the total reliability of the system deteriorates rather
rapidly in its present stage of design, with less than a 50-percent chance that it

will operate after 8.5 months. The reliability of subsystem C remains nearly con-
stant, whereas the greatest decline in reliability takes place in subsystem A,

which contains a particular part that is expected to wear out rapidly. The consult-
ing firm is asked to determine if enough improvement could be made in sub-
system A to provide a reliability after 8.5 months of 0.7500. Compute the
improvement needed in subsystem A.

Let x be the factor by which the reliability of subsystem A must be multiplied. Then,
as before,

P.= P\PsFc
0.7500 = (0.6910x) (0.7265) (0.9959) = 0.5000x

~0.7500 _
x = 0.5000 1.500.

The reliability of subsystem A must be 1.500 X 0.6910 = 1.037. The increase in
reliability cannot be obtained by improving subsystem A alone, since the

reliability cannot be greater than 1.

The next problem demonstrates the combined use of probability and computer
simulation to determine the volume of an irregular solid.

77




Chapter Five

78

PROBLEM 6.

Solution:

Solution:

Solution:

S hoa ot y e
FRLM S R

An internal fuel tank on a space vehicle has the shape of an ellipsoid truncated by
three planes, as shown in Fig. 5.4. Our problem is to determine the volume of
this fuel tank. Let us use, for an example, the ellipsoid whose equation is
2 2 2
%; + }3;—7 + % =1 and with the planes being x = =7, and z = —1.5, where the units

are meters.

Fig. 5.4

a. If the tank is surrounded as tightly as possible by a rectangular prism with faces
parallel to the planes formed by the coordinate axes, what inequalities must the
coordinates of the ponts inside the prism satisfy? What is the volume of this prism?

If (x,y,z) is inside the prism, x must satisfy —7 <x <7 because of the truncating
planes x = =7 and x = 7; y must satisfy —3 <y <3 because y = —3 and y = 3 are
the planes tangent to the ellipsoid and parallel to the x-z plane; z must satisfy
—1.5<z <2, since z is bounded below by the truncating plane z = —1.5 and

above by the plane z = 2 tangent to the ellipsoid and parallel to the x-y plane. This

rectangular prism has dimension 14 m X 6 m x 3.5 m, and the resulting volume is
294 m’.

b. Let V, be the volume of the prism and let V, be the volume of the tank. which
we are seeking. If a point is randomly chosen inside the prism, express the proba-
bility that it is also inside the tank, in terms of V,, and V..

This probability is equal to V,/V,, the ratio of the volume of the tank to that of the
surrounding prism.

c. If N points are chosen at random inside the prism and / of these points are also
inside the tank, express V, in terms of N, /, and V..

The probability that / points are in the tank out of the N points chosen randomly
inside the prism is approximated by //N. So we get I/N = V,/V,, giving
V.=V,(I/N).
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d. Write a computer program to perform this simulation, using a random number
generator to get coordinates of points within the prism.
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PROBLEM 7.

Sunspots were observed and recorded as long as two thousand years ago. The
invention of the telescope around 1610 permitted the systematic observation of
these solar features, their motion, and their frequency of occurrence. (Problem 6
of Chapter 7 illustrates the use of trigonometry in analyzing sunspot motion.) It

is relatively easy to observe sunspots by using a long-focus telescope to project an
image of the Sun on a piece of white cardboard.

Fig. 5.5 shows the record from 1610 to 1975 of what is now commonly referred to

as the “‘sunspot cycle.” The vertical scale represents the number of sunspots
observed. The data since 1740 are considered reliable.

Although sunspots are still not well understood, it has been established that they
are regions in the solar atmosphere that contain enormous magnetic fields relative
to their surroundings, along with cooler temperatures. Moreover, there appear

to be connections between the level of sunspot activity and the occurrence of
“magnetic storms” in Earth’s ionosphere, the density of Earth’s upper atmo-
sphere, and changes in Earth’s weather and climate.

Since variations in upper atmosphere density can affect the orbital lifetimes of
satellites, the prediction of sunspot activity is an important aspect of the plan-
ning of some space missions. The mean cycle length as well as its variability must
be taken into account, making statistical analysis vital to such predictions.
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The following table summarizes some of the data of Fig. 5.5. The first step in the
statistical analysis for the prediction of sunspot activity is to determine the mean
and the standard deviation for each of the following measures: the rise time; the
fall time; the period from minimum to minimum; the period from maximum to
maximum. Compute these means and standard deviations.

Table 5.1
Year of Year of Year of Year of
Cycle Minimum Maximum Cycle Minimum Maximum
1 1745 1750.3 12 1867.2 1870.6
2 17552 1761.5 13 1878.9 1883.9
3 1766.5 1769.7 14 1889.6 1894.1
4 1975:5 1778.4 15 1901.7 1907.0
5 1784.7 1788.1 16 1913.6 1917.6
6 1798.3 1805.2 17 1923.6 1928.4
7 1810.6 1816.4 18 1933.8 1937.4
8 1823.3 1829.9 19 1944.1 1947.7
9 1833.9 1837.2 20 1954.2 1958.2
10 1843.5 1848.1 2] 1964.6 1970.6
il 1856.0 1860.1

Solution: The computations were done by microcomputer. The program listing and the results
of the run are shown below and on page 82.
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530
536
540
545
550
560
570
600

605
G610
820
630
640
650
BGO
670
680
690

700
710
720

730

740
750
760

770

780
790
800
810
1000
1010
1020

1030
1040
1050
1060
1070
1080
2000

2010
2020
2030

2040
2050
2060
2070
2080
2090
2100
2110
3000

3010
3020
3030
3040
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HTAB 24: PRINT AAY; 3050 Z = GUM 7 (Mis 1)
FBR J°= 1 TO M 3060 2% = 100 * Z
ZENS= Bd) 3070.2ZAV = Z% 7 100
NEXT J 3080 RETURN
GOSUB 3000 4000 REM COMPUTER STANDARD DEVI
BAY = ZAU ATIONS TO 2 DECIMAL PLACES
HTAB 34: PRINT BAV 40Z0=D 1 )0 = ey o T Ay
REM COMPUTE AND PRINT STAND 4030 SUM = D(1) * D(1)
ARD DEVIATIONS A040 FBR Jo= 52 STOR (M - 1)
DIM D(M) 4050 DCJY = Z( 4y = ZRU
PRINT "S.D."5 4080 SUM = SUM + (D(J) * D(J))
FOR J = 1 TD M 4070 NEXT J
Z0J) = R(D) 4080 SD = SOR (SUM / (M - 2))
NEXT J 4090 SD% = 100 * SD
ZAY = RAY 4100 ZSD = SD% / 100
GOSUB 4000 4110 RETURN
RSD = 2ZSD
HTAB 9: PRINT RSD;
FOR J = 1 TQ M:Z2(J) = FCIy: NEXT
4 IRUN
ZAY = FAY CYCLE YR OF MIN YR OF MAX
GOSUB 4000 1 1745 175003
FSD = ZSD: HTAB 1B: PRINT FSD 2 1755.2 1761.5
5 3 1766.,5 1769.7
FOR J .= 1 TO M:Z(J) = ACI): NEXT - 1775.5 1778.4
Al 5 1784.,7 178841
ZAV = AAY 5] 1798.3 1805.2
GOSUB 4000 7 1810,6 1816.4
ASD = ZSD: HTAB 24: PRINT ASD 8 1823.3 1829.9
3 2] 1833.8 1837.2
EOR J = 4 10O MzZ(d) = Bitdys NEXT 10 1843.5 1848.1
4 1 1856 1860.1
ZAY = BAY 2 1867.2 1870.6
GOSUB 4000 13 1878.9 1883.9
BSD = ZSD: HTAB 34: PRINT BSD 14 1889.6 1894.,1
END 15 1901.7 1907
REM ECHO INPUT DATA 16 1913.6 1917.86
HOME (o 1923.6 1928.4
PRINT “CYCLE YR OF MIN 18 1933.8 1937.4
YR OF MAX" 19 1944, 1 1847.7
FORSEL =0 & T@ M 20 1954,2 1958.2
HTAB 3: PRINT Jj 21 1964.,6 1970.6
HTAB 12: PRINT X%(J); ALL TIMES ARE IN YEARS
HTAB 25: PRINT Y (J)
NEXT J CYCLE RISE FALL MIN-MIN MAX-MAX
RETURN TIME TIME PERIOD PERIOD
REM PRINT YEARLY RISE TIME 1 56 .3 4,9 10,2 1142
sFALLTIME sMIN-MIN PERIOD ;MAX 2 6.3 5 113 8,2
-MAX PERIOD & v2 5.8 9 8.7
PRINT "ALL TIMES ARE IN YEA 4 2.9 6.3 92 9.7
RE2 PR TN 5 3549 102 13.6 175
PRINT "CYCLE RISE FALL 6 6.9 S5l 243 $1, 2
MIN-MIN MAX-MAX" 7 5.8 6.9 127 1345
HTAB 9: PRINT "TIME TIME 8 6.6 4 10.6 7
PERIOD PERIOD" 9 e 6.3 9.6 10,9
EOR Ji=dT0l -0l 10 4,6 7.9 125 12
HTAB 3: PRINT Jj 14f 441 7.1 11:2 1045
HTAB 9: PRINT R(J); 2 3.4 8.3 11557 13.3
HTAB 1G: PRINT F(J); 13 5 57 10.7 1042
HTAB 24: PRINT A(J); 14 4.5 7.6 1251 12,9
HTAB 34: PRINT B(J) 5 Sva 6.6 11.9 10.6
NEXT J 16 4 6 10 10.8
RETURN 17 4.8 S.4 10,2 9
REM COMPUTE MEAN TO TWO DE 18 3.6 6.7 10,3 10,3
CIMAL PLACES 19 3.6 B.5 10,1 10,5
SUM = Z(1) 20 4 6.4 10.4 $20n
EOR =2 TO (M= 1)
SUM = SUM + Z(J) MEAN 2556 45 10,97 11,01
NEXT J S Dl 1 .36 12 2.17
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PROBLEM 8.
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Among the studies arising from Landsat observations are several concerning
the evaluation of properties of snowpacks. In many areas of the world, water
resources are heavily dependent on winter accumulations of snow.

Computer models are being developed whereby potential water resources can be
predicted from satellite measurements of microwave emission in snow-covered
areas. Predictions from such models are tested and the models refined by making
comparisons with'ground-based measurements of snow depth and temperature.
Such measurements, when graphed, inevitably show a large amount of scatter,

and it is the regression line for the data that is used as the standard for comparison.

Fig. 5.6 shows such a comparison, where the horizontal scale is temperature in
degrees Kelvin. (The Kelvin scale of temperature is obtained from the Celsius
scale by adding a constant, 273.15, so that 0°C =273.15°K, and

10°C = 283.15°K..)

The data points of Fig. 5.6 are listed below. Find the parameters of the equation
of the regression line.

30 —
(195,25) (207,19) (209.15)
(209.17) (210,25) (211,20)
(211,21) (214,21) (217,22)
25# o N (218.19) (218.16) (223.14)
S (227,20) (228.22) (230.13)
(232,13) (231,18) (232,17)
(233,18) (233,11) (233.8)
(235,21) (236,8) (237.5)
20 - . (237.12) (238.8) (239,16)
= (239,6)  (240,6)  (240.4)
£ oo (240,8) (241.8) (242.5)
= JE 0 (243.7) (243.6) (243.3)
£ 0 (243,1)  (245.1)  (247.2)
g 15— . (247.3)  (248.4) (249.4)
a8 = Regression (250.2) (251,3) (252,2)
z Model % Line (255,1)
= Generated —————— i
w
Curve
10
5 = Model generated curve of the snow depth versus
the actual depths taken with truck mounted or air-
craft sensors. N
S
~
oo 22
0 1 1 1 | 1 3
0 200 210 220 230 240 250 260 270
Ts (K)
Fig. 5.6

83




Chapter Five

84

Solut on:

As is the previous problem, the computations were done by microcomputer. The

ORIGINAL PAGE IS
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program listing and the results follow.

JLIST

10 REM SNOWPACK MODEL

1B S PRINTE

20 REM REGRESSION LINE

30 DATA 185,25,207,19,209,15,20
9173210425

40 DATA 211:20:211+211214,21421
7+22+218,19

S0 DATA 218+16:223,141227:20422
8422 4+230,13

60 DATA 232,13,231,18:232,17,23
3,18+233,11,233,+8,235,21,236
1B 237 By 287912

70 DATA 238,8+239,16,239,6:240,
6+240:+4,240,8,241 48,242 ,5,24
3:74243,6+243,43

80 DATA 243,1,245+14247,2,247,3
1248 44,2498 4250421251 43,252
122Dy

90 DIM X(4B6): DIM Y (d4B)

100 FOR I = 1 TO 486

110 READ X(I): READ Y (I)

120: NEXT I

130 GOSUB 1000

140 XSUM = 0:YSUM = 0:SP = 0:5Q =
0

150 EOR 1°= {1 10 46

160 XSUM = XSUM + X(I):YSUM = YSU
MRl YO(T )

OSSR =6R o KUGT) % Y(I):50-= 90
ARG ® KT

180 NEXT 1

190 XMEAN = XSUM / 4B:YMEAN = YSU
M / 46

200 B = (SP - 46 * XMEAN * YMEAN)
/ (80 - 46 * XMEAN * XMEAN)

210 BL = 1000 * B:B = BY% / 1000

220 A% = 100 * YMEAN:A = A% / 100

225 C% = 100 * XMEAN:C = C% 7/ 100

230 PRINT " THE REGRESSION LINE
HAS SLOPE "3B

240 PRINT " AND A MEAN SNOW DEPT
HoOF. "5n

250 PRINT " CORRESPONDS TO A MEA
N TEMPERATURE": PRINT " OF "
iE

260 END

1000 REM ECHO INPUT DATA

ICEDOEERINT WL gnai el )yt sy

10203 FOR T = 1 T0 4B

1030 PRINT I +X(1)sY (1)

1040 NEXT I

1050 PRINT "END OF DATA"

1060 RETURN

IRUN

WONG UL WM -

4B
END OF DATA

XI)
195
207
209
209
210
214
21
214
217
218
218
223
227
228
230
232
231
232
233
233
233
235
236
237
237
238
239
239
240
240
240
241
242
243
243
243
243
245
247
247
248
249
250
251
252
255

st

3

o

FRNWOUNDPEWUMN=~WLONUODDEOGO =0+ UNDMO

THE REGRESSION LINE HAS SLOPE -.45

AND A MEAN SNOW DEPTH OF 11,3

CORRESPONDS TO A MEAN TEMPERATURE

OF 232.63
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APOLLO 17 EVA—Astronaut Eugene A.
Cernan, Commander of the mission is photo-
graphed by Astronaut Schmitt whose photo is
reflected in the gold visor.
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PROBLEM 1.

Solution:

Solution:

Solution:

PROBLEM 2.

Solution:

us the description of the solar system we know today would have been virtu-

ally impossible without the use of logarithms to reduce the labor of the com-
putations. Although computers and calculators have replaced logarithms as com-
putational tools, logarithmic and exponential functions are still essential for the
study of Earth’s atmosphere and rocket propulsion, examples of which are cited
in this chapter.

T he early work that led to our understanding of the planetary motions and gave

Experimentation and theory have shown that an approximate rule for atmospheric
pressure at altitudes less than 80 km is the following: Standard atmospheric pres-
sure, 1035 grams per square centimeter, is halved for each 5.8 km of vertical
ascent.

a. Write a simple exponential equation to express this rule.
Letting P denote atmospheric pressure at altitudes less than 80 km and 4 the altitude
in km, we have 7

P =1035(1/2)">3 gicm?,

b. Compute the atmospheric pressure at an altitude of 40 km.

From the equation of part (a),
P

1085 (1/2)f%2 g/ cm?
1035 (1/2)%° g/cm?
1035 (0.0084) g/cm*
8.7 g/cm?,

Il

c. Find the altitude at which the pressure is 20 percent of standard atmospheric
pressure.

Substituting in the equation of part (a) gives (0.20) (1035) = (1035) (1/2)">¥, where
hisin km, and so (0.2) = (1/2)"*". Now, taking logarithms,

_
log (0.2) = 53 log (0.5)
and
log (0.2)

ST

km = 5.8 (2.32) km = 13.5 km.

The rule for the variation of atmospheric pressure with height which was given in the
previous problem can also be written

P = 1035 (2)~"s*
— 1035((2) "%,

Atmospheric scientists often use this rule in one of its equivalent forms where the
base is 10 or e, the base of the natural logarithms, instead of 2. Find &, and &, so
that P ="1035°@2)7" 1 — 1035 ([10)F " — 1035/(c )

We need to find k; so that 2"7 = 10%. Taking logarithms, 0.17 log 2 = k, or
k, = (0.17) (0.301) = 0.051. For k, we have 2°'7 = k2, or k, = (0.17) log.2
=(0.17)(0.693) = 0.12.
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PROBLEM 3.

Solution:

Sometimes different bases are used together in the same application in atmospheric
work. For example, atmospheric absorption of electromagnetic radiation from

the Sun and other sources is dependent on the wavelengths of the incoming radi-
ation. Instruments carried by rockets, balloons, and satellites have shown how

far in the atmosphere such radiation penetrates before being reduced by a factor of
1/e, the conventional measure used in this work. The results are given in Fig. 6.1.
Both the wavelength scale and the altitude scale are logarithmic, with the
horizontal scale in base 10 and the vertical scale in base 2. (How much of this
information could be displayed using linear scales even on a wall-sized chart?)

Fig. 6.1 shows that visible light and radio waves penetrate the atmosphere com-
pletely and reach Earth’s surface. However, gases such as oxygen, ozone, nitro-
gen, and water vapor absorb most of the infrared, ultraviolet, X-ray, and shorter
wavelengths. At what altitude will solar infrared radiation of wavelength 10~ m be
reduced by a factor of 1/e?

(=}
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Infrared
Ultra

200 km

Radio Wave
Microwave
Gamma Ray

100 km +

50 km

4

25 km — Visible Light

12.5 km
6 km

1 Earth profile
_\/\’\/’_/—/\w//

sea level

3 km

Fig. 6.1

The equal intervals on the altitude scale have length log 2. The ordinate we are
seeking, y, is 1/4 of the way between log 50 and log 100. This means that

I

logy = log 50 + %logZ S RogRt %(0.3010)

I

1.699 + 0.075 = 1.774.
Theny = 10'™ = 59.

If a calculator with a y* key is available, we can solve this problem without
actually finding logarithms, as follows:

logy = log 50 + %logZ = log {(50) (2)“*] = log [(50) (1.189)]

= log 59. Soy = 59.

In the foregoing problem, we saw how the use of logarithmic scales made it possi-
ble to display information over an extremely large range of values. The next two
problems show another use for logarithmic scales, that of fitting a mathematical

function to experimental data.
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PROBLEM 4.

Solution:

Very high energy particles (electrons and protons) are found in the radiation belts of
some planets (e.g., Earth, Jupiter, Saturn), and a plot of the number of particles
found at different energies is called a spectrum. Often the spectrum has a shape
that can be represented by an equation of the form N = KE™ where N is the
number of particles at a certain energy, E; K is a proportionality factor; and m is
called the spectral index.

When the spectrum has such a shape, we call it a power-law spectrum, and the
experimenter studying such a spectrum wants to know the values of m and K.
Table 6.1 shows values of N measured at several Es during the flight of Pioneer 10
past Jupiter. For these data, find the best value of m and of K. (N is really the
number of particles hitting a detector per unit time, or the counting rate, which is
why the number can be a fraction.)

Table 6.1

Energy, E Number, N
0.16 1.0 x 10°
0.30 1.5 x 10°
0.60 I8 S
1.0 6.8 x 10°
1.6 1.0 x 10°
4.5 20

10.0 1

20.0 0.1

Using logarithms on the expression N = KE™resultsinlog N = log K + mlog E, or,
to obtain the form of a linear equationy = mx + b,log N = mlog E + log K.

We can find logarithms for the values of £ and N in the table (or we can use
log-log graph paper and circumvent this step), plot the points, and draw the best
straight line through this set of points. Then m will be the slope of the line, and
K will be the value of N for which log £ = 0. (Note that this is the value that lies
on the best straight line, and not necessarily any value in the data set.)

We observe in Fig. 6.2 that the intercept on the log N scale is 3.5. Since log
N =3.5whenlog E = 0, we have log K = 3.5,s0 K = 10*° = 3200. The points
(0,3.5) and (1.0,0) are on the best fit line, so m = Sl =315080

0-1.0
N = (3200) E %
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PROBLEM 5.

Solution:
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Many of the control functions in a space vehicle system are automatic, handled
by computers and electronic feedback devices. However, the adaptability and the
decision-making ability of human monitors of these systems, whether crew mem-
bers or ground controllers, greatly increase the overall effectiveness of mission
control. Because of this, managers of projects in the space program have become
interested in some results from psychological studies of human decision making.

One such study measured the time it took to respond when faced with varying
numbers of choices. Experimental results are given in the table below, where N

is the number of choices presented and R is the reaction time in seconds. Graph
these data on semilogarithmic graph paper with N on the logarithmic scale (or
graph R against log,,N if semilog graph paper is not available) and find an empir-
ical expression for reaction time as a function of the number of choices.

N 1 2 3 4 5 6 7 8 9 10
R 017 034 037 0.42 048 052 0.56 058 0.59 0.57

The points are graphed and a “best fit”’ line drawn (see Fig. 6.3). Since the point
(N,R) = (1,0.17) does lie on this line, we have R = 0.17 + m log,,N. To find m,
we can use the points (1,0.17) and (9, 0.59), since both are on the “‘best fit” line:

0.59 = 0.17 + m log9

SO 0.42

m (0.954),

(0.42)/(0.954) = 0.44

Il

or m
The requested relationis R = 0.17 + 0.44 log,oN.

As we have seen in Chapter 4, solar cells, which convert solar energy into elec-
trical energy, can be used to supply power in space vehicles. Nuclear energy
derived from radioactive isotopes is also used. Nuclear energy sources gradually
lose power in a manner described by the exponential function. The next problem
illustrates some computations of the available power and operational life of a

satellite using a nuclear power source.
91



Chapter Six

PROBLEM 6. A satellite has a radioisotope power supply. The power output in watts is given by
the equation

P = 50e~/2%0
where ¢ is the time in days and e is the base of natural logarithms.
a. How much power will be available at the end of one year?
Solution:  Applying the given equation, we have
P = 50e7365/250
=50e"!4¢
=50x0.232
=11.6
Thus approximately 11.6 watts will be available at the end of one year.

b. What is the half-life of the power supply? In other words, how long will it take
for the power to drop to half its original strength?

Solution:  To find the half-life, we solve the equation

25 =50e""2%¢
for t and obtain
%i) =1In0.5
=-0.693
t =250x%0.693
=173.

Thus the half-life of the power supply is approximately 173 days. (Note that In x
is a shorter expression for log, x.)
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Solution:

PROBLEM 7.

Solution:

c. The equipment aboard the satellite requires 10 watts of power to operate
properly. What is the operational life of the satellite?

Solving the equation
10 = 50e /250

for t gives

—r_ In _19
250 50

=In0.2
= —1.609
t =250 x 1.609
=402.
Hence the operational life of the satellite is 402 days.

The theory of rocket flight shows that the velocity gained by a launch vehicle when
its propellant is burned to depletion is expressed by the equation

v=cIlnR

where v is the velocity gained by the vehicle during launch;
c is the exhaust velocity of the engine;
In R is log.R, or the natural logarithm of R;

: takeoff weight
and R is the mass ratio of the spacecraft, defined by R =—a—6i—m.
burnout weight

a. The takeoff weight consists of propellant or fuel, F, structure, S, and payload,

P. At burnout, assuming all the fuel has been used, the remaining weightis § + P,
so that R = F—;%;—P . In general, the weight of fuel cannot be more than about
10 times the weight of the structure in order for the vehicle to withstand the
stresses of operation. Show that if F = 10§, then an upper limit for R is 11.

F+S+P _10S+S+P
S+P S+P

If F =108, then R =

_11(S + P) - 10P
: S+P

—11--10P
e =T

So the largest possible value for R is 11, but we see that in order to actually
achieve this value, it is necessary for P to be 0—in other words, the launch vehicle

could carry no payload!
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b. The minimum altitude for a stable orbit about Earth is about 160 km. At lower
altitudes, air resistance slows the spacecraft and causes a rapid deterioration of
the orbit. As will be shown in Problem 1 of Chapter 9, the spacecraft must attain a
velocity of about 7.8 km per second to orbit at 160 km. However, in order to
overcome the retarding effect of Earth’s atmosphere while the spacecraft is
ascending, the total velocity imparted by the launch vehicle must be at least 9.0

km/s. What is the minimum exhaust velocity needed by the rocket engine if
R =117

Solution: ~ Substituting v =9.0km/s

and R =11 in the rocket equation,
9.0km/s=cln 11

9

o

9.0

——lnllkm/s=

c =3.8 km/s.

o
=S

c. The propellants used for engines such as those of the Delta, Centaur, and
Saturn launch vehicles could produce exhaust velocities averaging at most 3
km/s, which would not be sufficient to achieve orbit. The main engines of the
Space Shuttle use a mixture of liquid hydrogen and liquid oxygen, which can
produce exhaust velocities of 4.6 km/s. However, in order for the Shuttle to per-
form its tasks and return to Earth with its crew, it has an R-value of around 3.5.
Could the Space Shuttle achieve orbit with its main engines?
Solution:  If ¢ =4.6km/s, and
R =3.5, then
v =4.61n3.5km/s
= (4.6) (1.25) km/s
=5.8km/s,

which is not sufficient for orbit.
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PROBLEM 8.

Solution:

PROBLEM 9.

It is apparent from the rocket equation that the burnout velocity increases when the
mass ratio increases. We can get a higher mass ratio by using a solid propellant
because the stiff, rubberlike propellant mass serves as part of the structure. If no
payload, or a very small payload, is included, a solid-propellant rocket could

have a mass ratio of about 19. A typical average exhaust velocity for a solid pro-
pellant might be about 2.4 km per second. Could this launch vehicle achieve a

160 km Earth orbit?

Using the rocket equation,

v =2.5In19 km/s
=(2.4)(2.94)
=7.1 km/s,

which is much less than that needed for orbit.

The solution to the problem pointed out in the preceding examples is to use stag-
ing. That is, the launch vehicle is divided into two or more parts, or stages. As
soon as the propellant has been burned in the first stage, there is a brief coast
during which the heavy motors and structure in the first stage are jettisoned and
permitted to fall into the ocean. Freed from this deadweight, the second-stage
motors are much more effective; the same procedure is repeated for the remain-

ing stages.

Let us design a two-stage vehicle to place a payload into Earth orbit. We shall make
some simplifying assumptions to make this problem easier while preserving the
basic idea: (1) the structure weight of each stage is 10 percent of the fuel weight,
the remaining weight being payload; (2) the gain in velocity is divided equally
among the stages, each contributing 4.5 km/s to the required final velocity of 9.0
km/s; (3) all stages use the same propellant with an exhaust velocity of 3.7 km/s.
This third assumption is generally not true in practice—for example, the Space
Shuttle uses solid rocket boosters in addition to the main engines—but our goal
here is to see how staging works. For the sake of having a numerical example, we
shall also assume that the total weight at liftoff is 5.0 x 10* kg. For this numerical
example, determine the weight of fuel to be carried by each stage, the structural
weight of each stage, and the weight of the orbital payload.
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Solution: Let Fy, S,, P, represent fuel, structure, and payload weight, respectively, of the first
stage, and F,, S,, and P, those of the second stage. Since the “payload” of the
first stage includes the entire second stage and the orbital payload,

P1:F2+52+P2.

First stage: v=clnR,

4.5=3.7In R,

4.5
In Rlzﬁz 1522

R =e!2=34

F,+8+P _5.0x10
S = =3,
0 S+ P, S, + P, 3.4

4

Then 51+Pl:%>%“)—=1.5x104kg
and Fi=(5.0-1.5) x10*= 3.5 x 10* kg.

By assumption 1,  §,=0.10 (3.5 x 10) =3.5 x 10° kg.
Then P,=1.5x10*-3.5%x10°=1.15 x 10* kg.

Second stage: We again have, from the rocket equation,

4.5=3710R,,

SO R, =3.4.

Also, Rzzl—;;x—f}zw

Then SZ+P2=1—'153.X4—104=3.4>< 10° Kkg.
Therefore, F,=1.15%x10*-3.4x10°=8.1 x 10° kg

S$,=0.10(8.1 x 10°) = 0.8 x 10° kg

P,=(3.4—-0.8) x 10°kg =2.6 X 10° kg.
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PROBLEM 10.

Solution:

PROBLEM 11.

Solution:

Our design for the two-stage launch vehicle may be checked as follows:

Weight of fuel: kg x 10°
Bl oe e o s e e e e e el e e e e e e 35.0
Fr oo 8.1
RSB 2 6mit00 500 5 2 006 606 6. 5000 010 8.0 6 510 43.1

S e e e 35
S et e Sk e et e e e S 0.8
llotal e e 43
Weight of orbital payload .............. 2.6
Total weight of vehicle . ............ 50.0=5.0 x 10* kg

Thus, although the single-stage launch vehicle discussed in Problem 7 could not
place any payload into orbit, this two-stage vehicle can place nearly 5 percent of
its weight into Earth orbit.

Show that when all stages use the same propellant, the total mass ratio of a multiple-
stage launch vehicle is equal to the product of the individual mass ratios.

Indicate the burnout velocities and mass ratios of the first, second, third stages, and
so on, by the subscripts 1, 2, 3, and so on. Then, using a three-stage vehicle as an
example,
mvi+twv+vi=clnRi+cln R, +cln R

v=c(ln R +In R+ In R3)

v = clog.(RiR:R5)
(Note: Making the structure stronger so that it can support large payloads reduces
the mass ratios. However, if we have several stages, the total mass ratio can

become very high, producing much greater performance.)

Using the equation derived in Problem 9, show that the launch vehicle constructed
in Problem 8 can indeed orbit its payload.

Given RiR,=(3.4)(3.4) = 11.56
vy =2.7 log.11.56
=3.7(2.45)
=9.06 km/s
The launch vehicle will impart sufficient velocity to overcome drag losses and

insert the payload into a 160-km Earth orbit. Note that dividing the launch
vehicle into stages increases the overall mass ratio to 11.56.
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PROBLEM 1.

Solution:

ngle measurements and the trigonometric analysis of such measurements are

used extensively in space science. Among the examples we shall consider

here are some involving transformations between terrestrial (or celestial) and
spacecraft coordinate systems, a variety of photogrammetric corrections, and the
tracking of spacecraft from stations on Earth.

A conventional right-handed three-dimensional spacecraft coordinate system is
shown in Fig. 7.1. The angular motions of the spacecraft with respect to the x-,

y-, and z-axes respectively are called roll, pitch, and yaw, shown in Fig. 7.1 by
curved arrows. We shall develop the transformations between this coordinate
system in a moving spacecraft and a reference coordinate system whose origin
coincides with the one in the diagram but does not undergo rotation. Here, we
shall consider a single rotation at a time. In Chapter 8, ““Matrix Algebra,” we shall
investigate a series of such rotations.

When the spacecraft performs a rotation, the reference system remains fixed, but
the spacecraft coordinate system undergoes the same rotation as the spacecraft.
If the point Q has coordinates (x, y, z) in the reference system, we need to find its
coordinates in the spacecraft system after such a rotation takes place. Let us
consider each of the motions roll, pitch, and yaw separately.

a. Let the spacecraft coordinate system initially coincide with the reference sys-
tem, and let the spacecraft undergo roll through angle R. Express the coordi-
nates (xg, Yr, zr) Of a point Q on the spacecraft in terms of (x, y, z) and R after this
motion is performed.

)

o

{17
Fig. 7.1

Since the roll is around the x-axis, the x-coordinate of Q is the same in both systems:
xg = x. Now consider the plane parallel to the y-z plane, which contains Q. The
roll moves Q to Q" as shown in Fig. 7.2. Let r = OQ = OQ’ and let £LYOQ' = 6.
Then £Y,.0Q" = 6 — R. Q' has coordinates (y, z) in the reference system, where

y =rcos 6 and z = rsin 6.



Trigonometry

Solution:

Solution:

In the spacecraft system, Q" has coordinates ( yg, zr)
where yr = rcos (6 — R) and zg = rsin (6 ~— R).
Expanding the sine and cosine of this difference results in

yr=rcos fcosR + rsinfsin R =ycosR + zsin R

rsin fcos R —rcos#sin R = zcos R — ysin R.

ZRr

b. Find the comparable transformations if the rotation is either a pitch through
an angle P or a yaw through an angle Y.

For a pitch rotation, this takes place around the y-axis, so if the coordinates in the
spacecraft system are (xp, yp, Zp), We have yp = y. We next consider a plane

parallel to the x-z plane, and the analysis will be just as in part (a) with y replaced
by z, z replaced by x, and ZR replaced by £ P, resulting in xp = x cos P — z sin
P;zp = zcos P + xsin P.

A yaw rotation takes place around the z-axis, so if the coordinates in the space-
craft system are (xy, Vy, zy), we have zy = z; now we consider a plane parallel to
the x-y plane, and this time the analysis is just as in part (a), with y replaced by x,
z replaced by y, and ZR replaced by Y. The resultisxy = xcos Y + ysin Y]

yy = ycos Y — xsin Y. (We note that the right-handed system dictates that a
positive angle of rotation take place so that the cyclic order x y z x is maintained. )

c. An Earth-based computer monitoring the coordinates of Jupiter in Voyager’s
reference frame recorded Jupiter at (2.03, —2.81, 0.336) (in units equivalent

to 10° km) at one point. If Voyager had performed a yaw rotation of 28° just prior
to this reading, what were Jupiter’s coordinates in the spacecraft

coordinate system?

Using (x', y', z') for the spacecraft coordinate system:
x' = xcos 28° + ysin 28°

= 2.03 cos 28° — 2.81 sin 28°

= 0.473

y' = — xsin 28° + y cos 28°
= —2.03 sin 28° — 2.81 cos 28°
= —-3.43

z/ =z =0.336

So the coordinates were (0.473, —3.43, 0.336) in these units.

We next calculate the length of some of the latitude circles on Earth.
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PROBLEM 2.

Solution:

Solution:

Solution:

102

Although Earth is not really a sphere, it can be treated as though it were spherical
for many purposes.

a. Show that the length of any parallel of latitude around Earth is equal to the
equatorial distance around Earth times the cosine of the latitude angle (see
Fig. 7.3), if we assume a spherical shape for Earth.

Fig. 7.3

By the definition of the cosine function, cos § = r/R, or r = R cos 6. The length
of the parallel of latitude is C,. If C. denotes the equatorial circumference of
Earth, then

C, = 2mr

I

2wR cos @

Il

C. cos 6.
b. Find the length of the 30° parallel, north or south latitude. Use R = 6400 km.
Applying the formula for the length of a parallel of latitude derived in part (a) gives
C, = (6400 km) (cos 30°)
= (6400 km) (0.866)
= 5500 km.
c. Determine the length of the Arctic Circle (66°33' N).
Using the formula from part (a), the length is
C, = (6400 km) (cos 66°33")
= (6400 km) (0.398)

= 2500 km.
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Solution:

PROBLEM 3.

Solution:

d. How far is it “‘around the world”” along the parallel of 80° north latitude?

Using the result of part (a), the distance is

C, = (6400 km) (cos 80°)

Il

(6400 km) (0.1737)

1100 km.

Two tracking stations s miles apart measure the elevation angle of a weather balloon

to be a and B, respectively (Fig. 7.4). Derive a formula for the altitude 4 of the

balloon in terms of the angles @ and B. Ignore Earth’s curvature.

Fig. 7.4

Writing an equation for the cotangent of each angle and solving for x gives

Sl X
h

cot ai =

x=hcota — s

and

cotB=%

x = hcot B.
Now the two expressions for x are equated:

hcota —s = hcot B
SO
h(cota —cotPB) =5
and

S
cota — cot B
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PROBLEM 4.

Solution:

A satellite traveling in a circular orbit 1600 km above Earth is due to pass directly
over a tracking station at noon. Assume that the satellite takes two hours to make
an orbit and that the radius of Earth is 6400 km.

a. If the tracking antenna is aimed 30° above the horizon, at what time will the
satellite pass through the beam of the antenna? (See Fig. 7.5.)

Noon

Station 4 Satellite

6400

Fig. 7.5

In the triangle formed by the station, the satellite, and the center of Earth, y = 120°.
From the law of sines,

sina _ sinvy

6400 8000
sin a = 6——40082801200 = 0.693.
Then
a = 44°
and
B = 180° — (120° + 44°) = 16°.
The time between
B'= 16° and B = 0.0° is = (120 min)
360

= 5.3 min.

This means that the satellite will pass through the beam of the antenna at
12:00 — 5.3 minutes, or 11:54.7 a.m.
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Solution:

Solution:

b. Find the distance between the satellite and the tracking station at 12:03 p.m.
Computing angle B gives

3 min o ao
B= o Y

By the law of cosines,
x2 = (6400)* + (8000)% — 2(6400) (8000) cos 9°
= (40.96 + 64 — 101.14) x 10° km’
= 3.82 x 10° km?
x =1.96 X 10* = 2.0 x 10’ km.

We have found that the distance between the satellite and the tracking station is
2000 km (to two significant figures) at 12:03 p.m.

¢. At what angle above the horizon should the antenna be pointed so that its
beam will intercept the satellite at 12:03 p.m.? (See Fig. 7.6.)

12.03 p.m‘-—\ Noon

8000

Fig. 7.6

Again, applying the law of sines,

sin 9°  sin (y + 90°)

2000 8000
. 8000 . oo
sin (y + 90°) = 3000 sin 9° = 0.626
cos y = 0.626
v = 51°.
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Solution:

Two of NASA’s tracking stations are located near the equator; one is in Ethiopia, at
40° east longitude, another near Quito, Ecuador, at 78° west longitude. Assume
both stations, represented by E and Q in Fig. 7.7, are on the equator and that the
radius of Earth is 6380 km. A satellite in orbit over the equator is observed at the
same instant from both tracking stations. The angles of elevation above the hori-
zon are 5° from Quito and 10° from Ethiopia. Find the distance of the satellite

from Earth at the instant of observation.

59% 59°

Fig. 7.7

In Fig. 7.7, OQ = OP = OE = 6380 km: ZQOE = the longitude difference of the
two stations, so ZQOE = 78° — (—40°) = 118°. Since AQEQ is isosceles.

/OQE = LOEQ = % (180° — 118°) = 31°.

Further, since the horizon is perpendicular to the radius, ZSQE = 5° + (com-
plement of ZEQO) = 5° + 59° = 64°, and ZSEQ = 10° + (complement of
£QEQ) = 10° + 59° = 69°. Also, LQSE = 180° — (64° + 69°) = 47°. These angles
are all shown in Fig. 7.7. We are looking for the distance SP. If we can determine
OS, then SP = OS — OP = OS — 6380 km. We note that OS is not an angle bisec-
tor for either ZQOE or ZQSE, so we must use an indirect method to find OS.

We can evaluate QE from — QE - _OE

sin 118°  sin 31°:

_ 6380 sin 118°
sin 31°

QE = 1.094 x 10*km;

then

SE. QE
S8 i sin 64°  sin 47°°

_ 1.094 x 10*sin 64°

Sl sin 47°

= 1.34 X 10* km;
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PROBLEM 6.

now

0OS = V(OE)? + (SE)? ~ 2(OE) (SE) cos LOES

= V(6.38 x 10°7 + (1.34 x 10°) — (2)(6.38 x 10°) (1.34 x 10%)cos 100°

= 10°V40.70 + 119.68 + 24.24

= 10°V249.62 = 1.58 x 10*km.
So

SP = 15800 ~ 6400 = 9400 km.

Although the Sun is more than a hundred times as large as Earth, as we noted in

the first problem of Chapter 4, it subtends an angle of only about half a degree in
the sky as viewed from Earth. In the next problem, we consider some aspects of

the observation of sunspots.

a. Find the angular separation between two large sunspots when viewed from Earth
(or Earth orbit) if they are separated by 30° in longitude along the Sun’s equator.

Consider two cases:

1. A time when the midpoint between the spots is on the center of the visible disc
of the Sun;

2. A time about a week later when the Sun has rotated so that the leading spot is
just about to go over the Sun’s limb (edge).

Recall that the Earth-Sun distance is 1.5 X 10® km. The radius of the Sun is
7.0 x 10° km. In the first case it will help, and in the second it will be necessary,
to make a suitable approximation (Fig. 7.8).

B
C D
30 A
Case (1) Sun’s Rotation Axis
B
Photographic
E .\ Sunspots
1300 ’
C D
Case (2)
Fig. 7.8
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Solution: Case 1. In the edge-on drawing shown above we have:
CD = Earth-Sun distance = 1.5 x 10®km
CA = CB = radius of Sun = 7.0 x 10° km
£ABC = 30° and CD bisects ZACB

Let AE be the perpendicular from A to CD and let 4 be its length.

Then
CE = hcot LACE;
ED = hcot LZADE;
and
h = CAsin ZACE.
So
CD =CE + ED
= hcot LACE + hcot ZADE
= CA sin £LACE cot ZACE + CA sin ZACE cot ZADE.
Then

cot ZADE = CD — CA sin ZACE cot ZACE _ CD — CAcos LACE
CA sin £ACE CA sin ZACE

_ 1.5x10° — 7.0 X 10° cos 15°
7.0 x 10° sin 15°

_1.5x10° = 7.0 x10° X 0.97
7.0 x 10° x 0.26

155 108608 >y LS K10
1.8 x 10° 1.8 x 10°

=0.82 x 10°.

£ ADE = arccot 0.82 x 10° = 0.070°, so the angular separation between the
sunspots =2 ZADE = 0.14°. A simpler solution can be found if we approximate
AD by saying AD = CD. Now we can use the law of sines:

CA AD

sin ZADC  sin ZACD’
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Solution:

then
- _CA _CA
sin ZADC = AD sin £LACD ch sin ZACD
S
= %3%‘ sin 15° = 4.7 x 10~ x 0.26
=205
and so

£LADC = 0.07°and LADB = 2 LADC = 0.14°.

Case 2. There is more than one way to solve this, but we present just one
solution and use an approximation. In the drawing for Case 2 (see Fig. 7.8),
construct the perpendicular AE from A to BC. For the approximation, we shall

use tan ZADB = LY In AAEC, cos LACE = CE ,s0 CE = CA cos LACE =

BD’ CA
7.0 X 105 cos 30° = 7.0 x 10° x 0.87 = 6.1 x 10° km.

Then EB=CB - CE =7.0x10°—6.1 x 10°= 0.9 X 10° = 9 X 10*km.

4
Now, from our approximation, tan ZADB = 19—;;%% = 6 x 10*, giving the

angular separation ZADB = 0.036°.

b. The unaided eye can distinguish a sunspot if it is 1.5 minutes of arc, or 0.025
degrees, across. Sunspot sizes are usually measured in units of 0.001 of the Sun’s
area. What is the minimum size of sunspot that can be seen without a telescope?

Sun’s area = 4mr? = 4mw(7.0 x 10°)>km? = 196w X 10" km?®. Since 1 sunspot
unit = 107 of the Sun’s area, we have 1 sunspot unit = 196w x 10" km®,
Now if we assume that we have a sunspot that is approximately a disc sub-
tending an angle of 0.025° at Earth, we see from Fig. 7.9 that the disc has

radius = (Earth-Sun distance) X sin<0'0225 )

=1.5 % 108 x 2.2 % 10*km = 3.3 X 10* km.

Earth-Sun Line
Sunspot M
Diameters
.025°

Fig. 7.9
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Such a disc has area m(3.3 x 10*)? km?

1 sunspot unit
m X 196 x 10" km?

m(3.3)% X 10°km? x

_ 108.9 X 107

196 x 107 sunspot units

= (.55 sunspot units.

Historical note: Very few sunspots exceed an angular diameter of 1.5 minutes of

arc. Normally, the Sun is too dazzling to permit an observation of such a sunspot
by the unaided eye; however, if the Sun is low on the horizon and shines through
a thick haze, sunspots can be observed. Pretelescopic sunspot observations have

been recorded by Chinese and Japanese viewers. (Caution: Never look directly at
the Sun.)

The photographic scale factor for vertical aerial photographs was developed in
Problem 7 of Chapter 4. We now consider the situation when the camera is tilted
so that the film is not parallel to the ground. The result of such tilting is shown in
Fig. 7.10, where the broken lines represent a square grid as it would appear in a
vertical photograph and the solid lines show the actual image on a tilted photo-
graph. (This is sometimes called the “keystone effect.””) In order to use the
photograph to produce an undistorted picture, numerical relationships must be
established between the actual shapes and their photographic images.

Scale variation on tilted photograph. N A

Fig. 7.10 Fig. 7.11

Fig. 7.11 shows the geometry of the configuration, where the camera is located at C,

N is the nadir, V is the photographic nadir point, P is the image of ground point
A, and tis the tilt angle of the film (the acute angle made by the film with the
horizontal). If CT is the normal from the camera to the film, CT = f, the focal
length of the camera. CN = H is the height of the camera above the ground, which
we assume to be level. It is customary in this work to use the film “‘positive”” QW
instead of the “negative” PV. This is obtained by choosing W on CN and Q on CA
so that CW = CV and CQ = CP. We let R be the point on the film positive so

that CR is normal to the film.
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a. Let 6 be the angle made by the line from the camera to the ground point A with
respect to the vertical, where § > 0 if Q and R are on the same side of CN and

6 < 0 if they are on opposite sides of CN (§ = £ZNCQ). Express the ratio of the
length of the image WQ to the length of NA in terms of 6, ¢, f, and H for the case

where 6 > .

Solution: From the geometry, we see that since CR L WQ, ZNCR = £ZVCT = rand

QW:QR+RW:ftan(9—t)+ftant

AN AN H tan 6
f (tan 6 — tan 1) 4 £ tan ¢
_ 1+ tan 6 tan ¢
H tan 6

_ftan @ —ftant + f tan¢ + f tan 6 tan’ ¢
H tan 6 (1 + tan 6 tan ?)

_ ftan 6 (1 + tan’ )
H tan 6 (1 + tan 6 tan ¢)

QW _ _ f(1 +tan’p)
AN  H(1 + tan @ tan )’

b. Show that if = 0 (untilted camera) or t = 6 (camera aimed at point A), then

%\;\Jg = % . (Recall from Problem 7 of Chapter 4 that this is the scale factor of a

vertical photograph.)

Solution: For t = 0, tan ¢t = 0 and the result follows. For ¢ = 6, the second factor in the
denominator becomes (1 + tan® 7), which cancels, and the result follows.

c. Show that the result of part (a) still applies for the cases where Q is between
W and R (Fig. 7.12) and where Q is on the side of CN that does not contain R
(Fig. 7.13), taking into consideration the sign of 6.

Fig. 7.12 Fig. 7.13
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Solution:

If Q is between W and R, then

QW _ RW - RQ _ ftant — ftan (t — 6)
AN AN H tan 6

f (1 + tan? ¢
H (1 + tan 6 tan 1)’

If Q is as shown in Fig. 7.13, then 6 is negative, and the positive value of the
angle in the diagram is (—6).

So
QW:QR—RW:ftan((—0)+t)—ftant
AN AN H tan (—6)
ftan(t —6) —ftanr _ f (1 +tan’y)
—H tan 6 H (1 +tant tan 6)’

Note that this implies (since 6 is negative in the last case) that points on the
“down side of the film will have their images “‘stretched out,” whereas points
on the “up” side (at least those for which 6 > ) will have their images “‘shrunk.”

d. Fig. 7.10 showed a point I (called the isocenter) at which there is no distortion
in the scale of the tilted photograph. Show that I is the point of intersection of
the bisector of ZNCR in Fig. 7.11 with the film positive QW by establishing that a

vertical photograph taken with the camera in its position at C would contain the
point I.

The bisector of ZNCR is shown in Fig. 7.14, along with a horizontal through I that
intersects CN at Y. Since CN is vertical and 1Y is horizontal, 2 CY1 is a right

angle. Triangles CYI and CRI have corresponding angles equal and share side CI
and are therefore congruent. Since CY = CR = f, a vertical photographic posi-
tive and the actual photograph positive from the same camera position C both
contain the point [.

LA\ o
2\
ye
ﬁ
L R
N A\
Fig. 7.14 Fig. 7.15
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PROBLEM 8.

Solution:

In Problem 8 of Chapter 4 we developed a formula to correct an aerial photograph
for distortion due to Earth’s curvature. The distortion occurs because the camera
cannot distinguish how far away an object is—it has no “depth perception.” For
aerial photography, the picture is interpreted as though everything is in the plane
tangent to Earth at the nadir; in satellite photography, as we shall see in Problem 9,
pictures will be interpreted (unless corrected) as though everything is in the
horizon plane sensed by the satellite.

Depth perception in humans has two aspects, called monoscopic and stereoscopic.
Monoscopic judgments of distance use only one eye and are based on an inter-
pretation of relative sizes of objects, shadows, hidden portions of objects, and
other attributes of this type; such judgments are very rough and frequently fail.
Stereoscopic judgments of distance use both eyes and are guite accurate in most
people. Stereoscopic judgment depends on the physical separation of the eyes,
which causes an object to be viewed at a different angle by each eye, as shown in
Fig. 7.15. The angle subtended by the “‘eye base”™ (the distance LR where L is

the left eye and R the right) at the object O is called the parallactic angle; it is
evident that the closer the object, the larger the parallactic angle.

The smallest parallactic angle discernible by human eyes is about 0.025°, and the
average adult eyes are spaced about 6.5 cm apart. What is the largest distance at

which the average adult can judge depth?

Let d be the distance of O from LR in Fig. 7.15. We present two methods of solution.
The first uses the fact that

tan (% /LOR) = (% LR)/d. s0d = (0.0325)/tan(0.0125°) m

=150 m.

For another approach, we may approximate LR as an arc of a circle with radius d
where LR subtends an angle § = 0.025°. If fis in radians, then LR =6 -d. So

9 = 0.025° = 0—105% — 0.00044 rad and therefore
0025 .
d = gEi=m = 150m,

Satellites such as the Landsats, Seasat, and the Synchronous Meteorological Satellites
(SMS-1 and -2) have made it possible to study Earth and its oceans, resources,

and weather patterns as never before. They have returned observations and data
that are being used by botanists, geologists, oceanographers, and meteorologists,
among others, in numerous projects. To cite just two examples, Landsat observa-
tions have been used in the assessment of soil moisture in agricultural fields, and
SMS observations have been useful in predicting severe storms.
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PROBLEM 9. A spacecraft at a distance 4 from Earth in synchronous orbit can see only a portion

of Earth’s surface, as illustrated in Fig. 7.16. The circle that is the boundary of

this spherical “cap™ will be called the horizon circle, and the spacecraft has sensors
that can recognize this horizon.

Although every spacecraft uses its horizon sensors to find its angular direction
with respect to Earth’s center, those satellites whose purpose is to observe Earth

can also use this angle measurement to determine the size of the spherical cap
that can be observed.

In Fig. 7.17, S is the position of the spacecraft, C is the center of Earth. H is a
point on the horizon circle seen by the spacecraft, P is the subsatellite point

on Earth (the intersection of Earth’s surface with the line from Earth’s center to
the satellite), and Q is the center of the horizon circle. We have SP = /4 and

CH = CP = r, the radius of Earth. pis the angular separation of the horizon seen
by the spacecraft from Earth’s center, and A is the angle subtended at Earth’s
center by the radius of the horizon circle.

a. Find the relationships among p, A, &, and r.

Solution:  Since ASHC has a right angle at H, sin p = cos A = :L o
r

b. Listed below are some Earth-observing satellites and their perigee or apogee
distances from Earth. For each, find the angular radius (A) of the horizon circle
seen by the spacecraft. (Earth’s radius is 6378 km.)

Landsat 2 916 km (apogee) 0GO-1 260 km (perigee)
Seasat 790 km (apogee) 0GO-1 150 000 km (apogee)
SMS-2 36 000 km (apogee)

(OGO is the Orbiting Geophysical Observatory.)
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Solution:

Solution:

Using A = cos"(—r— ) for Landsat 2 we have
r=th

= cos”(@%) = cos~1(0.8744) = 29°.

Similarly, we get angular radii of 27°, 81°, 16°, and 87° for the remaining
cases, respectively.

c. If a satellite sees a horizon circle of angular radius 30°, what is its distance
from Earth?

6378
30° = ——— = 0.8660
sos 6378 + h

~ 6378(1 — 0.8660)

h= 0.8660 = 987 km (to the nearest km).

In observing Earth from space using spacecraft sensors, distortions are introduced
because of Earth’s spherical shape. For example, suppose a thick black line is
painted along the equator, the 10° parallel of latitude, and the 50° and 90° west
meridians of longitude as shown in Fig. 7.18(a). Uncorrected observations of this
“rectangle”” would appear as shown in Fig. 7.18(b). The diagram in Fig. 7.19 illus-
trates how this distortion comes about. Although spacecraft sensors can measure
the angle at which point R on Earth is observed, they cannot measure the distance
to R—all observations are interpreted as though lying in the same plane, so the
image of R is treated as though it were at R, in the plane of the horizon circle.

Horizon Circle
Center at
Latitude 0°
Longitude 70° West
Angular Radius 30°

X /— 10° Latitude
\ \ \
\N&o T | ) 7
‘a,Or -40° i ‘ . 90 W‘
| ot Longitude ==
“ TR ] o

Sl
Q
>
=

(a) (b)

Fig. 7.18

115

\<=——50°W Longitude



Chapter Seven

116

Solution:

Solution:

The data can be corrected by the spacecraft’s computers so that the information
relayed to Earth is distortion-free. The actual computer program that does the
correction depends also on the particular hardware of the sensors, but the first step
in the correction is to express the relationship among the angle of observation of

R (£ a), the angular deviation of R from the line joining Earth’s center to the
satellite (£ B), and the angle of observation of the horizon (£ p). Since a and p

can be measured, the computer can then find g for the proper mapping of R.

d. Show that the relationship linking «, B, and pis given by

sin p sin 3

i St —L—
1 —sinpcos B

In Fig. 7.19,if T is the foot of the perpendicular from R to CS, then
_RT _ RT rsin 3
tantar="—== =
IESEESESL@TE N (7 A) =S cosi 3
r 2
a1 sin p sin B
0 1 — sin pcos B
h cos B
H
2
p a
Fig. 7.19

e. If the spacecraft sensors measure Zp as 30° and a point R is observed at an
angle of 25° from the subsatellite point, what is the actual angular displacement of
R from the subsatellite point with respect to Earth’s center?

We have £Zp = 30°, La = 25°, and we are seeking £ .

sin 30° sin B

last tion, tan 25° = - ;
From the last equation, tan 1 — sin 30° cos B

SO

(0.5) sin B
1 —(0.5)cospB

0.446 =

_ __sin .
2—-cosB’
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PROBLEM 10.

then (0.466) S
4 —4cospB + cos’B’

1—cos’B
4 —4cosfB +cos’B’

0.217 =

Clearing fractions gives 0.868 — 0.868 cos 8 + 0.217 cos’ B = 1 — cos® B, and col-
lecting terms gives 1.217 cos” B — 0.868 cos B — 0.132 = 0.

Then
cos g = 2868 = V(Z0.-868)" — 4(1.217)(=0.132)
2(1.217)
_ 0.868 = V1.396
2438

Since we know that | 8| < 90°, we discard the negative root, and so

cos B = %—gg—g = (.841
B = 32.8° = 33°.

We have already seen in Fig. 2.2 of Chapter 2 that the celestial coordinate system
uses angles of declination and right ascension in a manner analogous to the
latitude and longitude angles of the coordinate system of Earth. We now compare

the three-dimensional spherical coordinate system commonly used in mathe-
matics with the one generally used in astronomy and space science.

Texts in analytic geometry or calculus with analytic geometry usually define a
spherical coordinate system so that if for P(p, 6, ¢) we let Q be the foot of the
perpendicular from P to the x-y plane (Fig. 7.20), then

p = the distance OP, p = 0

the angle made by OQ with the positive x-axis, the positive
angular direction being a rotation from OX toward OY,
0=0<2mw

¢ = the angle made by OP with the z-axis, with the positive angular
direction being away from OZ,0 = ¢ = .

z

Fig. 7.20 |z

dite
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In this system, as the reader may verify, the transformation between (x, y, z) and
(p, 6, @) are as follows:

1
x = psin ¢ cos 6 P tiyf 7t 2
y = psin ¢ sin 0 6 = (arctan (y /x)
1
z =pcos o ¢ = arccos (z/()c2 +y% + 22)2>

In the spherical coordinate system used by astronomers and space scientists, if P
has coordinates (r, 8, @) and Q is the foot of the perpendicular from P to the x-y
plane (Fig. 7.21), then

I

r = the distance OP,r = 0

é

Il

the angle made by OP with OQ, the positive angular direction
being from OQ toward the positive z-axis,

ST
IA
[e7]
IA

[STE

a = the angle made by OQ with the positive x-axis, the positive
angular direction being a rotation from OX toward OY,
0=a <2m.

Develop the transformations from (r, 8, @) to (x, y, 2).

Solution: From the definitions, it is evident that

So we have

. . ar
X = psin ¢ cos § = rsin (—?:— 8) COS @ = rcos 8 ¢Cos «

y = psin ¢ sin 6 = rsin (g— 6) sin @ = r cos & sin «

Z = pcos ¢ =rcos<g—6> = rsin &

(Recall that & is the declination and « the right ascension in the celestial
coordinate system.)
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PROBLEM 11.

Solution:

Solution:

On March 5, 1979, the spacecraft Voyager I passed close to the Jovian moon lo. This
close encounter took place just after Voyager’s closest radial approach to Jupiter,
which occurred at about noon on that day. If we set up a Cartesian coordinate
system centered at Jupiter with the x-y plane as Io’s orbital plane and the
Jupiter-to-Sun vector as the positive x-axis (see Fig. 7.22), then Voyager’s
spherical coordinates at t, = 13 hours were 7 = 5.0, 8 = =5.0% and a = 127°.

(We measure lengths in units of Jovian radii, R, where 1 R; = 70 000 km.
The spherical coordinate system used here is the one defined in the

previous problem.)

To orbit

% ~<—To Sun />—R
B 1}
\

V, at't,

V, at't

-—Jo att,

Fig. 7.22

a. What was the Voyager’s radial distance from Jupiter in km at £, = 13 hours?
r=5.0(R;) = 5.0 x 70000 km = 350 000 km

b. What were its Cartesian (x, y, z) coordinates in the system defined above?
x = 5.0cos (—5.0° cos (127°) = =3.0 R,

y = 5.0¢cos (—5:0°)sini(127°) = 4.0°Ry

I

z =5.0sin (=5.0°) = —0.44 R,
Three hours later, at t; = 16 hours, its coordinates were

r=6.5,8=-19,a = 166°.
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Solution:

Solution:

Solution:

Solution:

c¢. What were Voyager’s Cartesian coordinates at #; = 16 hours?
= 6.5 cos (—1.9°) cos (166°) = —6.3 R,
y = 6.5cos (—1.9°) sin (166°) = 1.6 R,
z=6.5sin(—1.9°) = -0.22 R,

As you can see, in the interval Voyager has moved away from Jupiter in the anti-
Sun direction (its x-coordinate has become more negative), toward the Sun-
Jupiter line (its y-coordinate has decreased), and it has moved toward Io’s orbital
plane (its z-coordinate has decreased in abolute value).

[f we assume that Voyager’s Cartesian coordinates change linearly with time
between £, and 1, this means that we assume that Voyager has constant velocity
components in the x, y, and z directions.

d. Under this assumption, what are Voyager’s velocity components in the x, y,
and z directions?

_Xl_Xn__6.3*(—3.0)_ .
Vx—tl_t“— 16 = 13 = —1.1R;/h

= 1.1 x 70000 km/h = 77 000 km/h

yi—yo_ 1.6 —(4.0)

V=4 =+ = "16=13 = ~0-8Ri/h=56000km/h
_zi—z —0.22-(0.44) B
V.=t = —1g—13 = 0073 Ri/h = 5100 km/h

e. Under the assumption that Voyager’s Cartesian coordinates vary linearly with
time, find expressions for x (¢), y (1), and z (¢).

Since x = xo + Vi (¢t — t), we havex = —3.0 — 1.1 (¢ — ¢). Similarly,
y=40-0.8(—1f)andz = —0.44 + 0.073 (¢t — t,). While Voyager was
moving, Io had been progressing in its orbit. Consider Io’s orbit to be a circle of
radius r = 5.9 and recall that in this coordinate system, [0’s § equals 0 at all
times. At t, = 13 hours on 5 March, Io’s phase angle a was 139°,

f. This phase angle is a linear function of time. Knowing that Io’s orbital period is
42.5 hours (i.e., it takes o 42.5 hours to move 360° in a), derive an expression
for a(r).

360

To moves through 103

degrees per hour, and @ = 139° at ¢, so

a(t) = % + 139 degrees = 8.47 (r — ;) + 139 degrees.
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Solution:

Solution:

Solution:

g. Find Io’s rectangular coordinates as functions of time.
x =rcosdcosa = 5.9cos (8.47 (t — ty) + 139), since cos 6 = 1

rcos dsina = 5.9sin (8.47 (r — t) + 139)

b

Il

z=rsind =0

h. Derive an expression for the separation distance A between Voyager and Io as a
function of time. Use { for (t — t).

A% = (Xvoy = X10)* + Ovoy — Y1) + (Zvoy — 210)?
From parts (e¢) and (g),
2= [-3.0 — 1.1 — 5.9 cos (8.47¢ + 139)]
+ 4.0 — 0.8 — 5.9 sin (8.47¢ + 139)
+ [-0.44 + 0.073¢)
i. Use a calculator and evaluate A, for several values of , in the interval 0 = { = 3.

Plot the results, and use the resulting graph to find when Voyager’s closest
approach to Io occurs and at what distance.

L A 1.5t
0 1.51
0.5 1.23
1.0 0.94 1.0
1.5 0.62
2.0 0.33 -
2.1 0.28 ’
2.2 0.26 0ol
23 0.25 e
2.4 0.27 )
2.5 0.31 0 ! ! |
2.75 0.46 1 2
3.0 0.65 Fig. 7.23

The graph is shown in Fig. 7.23.

We see that the closest approach occurred at ¢+ = 13 + 2.3 hours = 15.3 hours on
March 5 at a distance of 0.25 R;, or about 17 500 km.
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j. What are the components of the Voyager-1o separation vector at the time of
closest approach?

A= —3.0 — 1.1(2.3) — 5.9 cos (8.47 X 2.3 + 139)° = —0.041 R,

=
I

4.0 — 0.8(2.3) — 5.9sin (8.47 x 2.3 + 139)° = +0.004 R,

\e
[

—0.44 + 0.073(2.3) = —0.27 R,

Thus, Voyager I was mostly “‘below’ Io at closest approach: its separation was
almost entirely in the z direction, perpendicular to Io’s orbital plane.
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PROBLEM 1.

Solution:

handle, and manipulate, with the aid of computers, large quantities of

data. Most of the actual examples involving matrix algebra are too long and
complex for inclusion here; however, by considering simplified examples, we can
get some sense of the role of matrix algebra in this context.

Matrices are an invaluable tool in space science, making it possible to organize,

In Chapter 5 we considered some simple error-detecting binary codes for telemetry.
A more complex system, the Hamming Code, will not only detect the presence

of an error in a received message but will identify the erroneous bit in cases where
a single error has occurred. If two bits are wrong, this fact will be detected but

the locations of the errors will not be known. We use a very simple example to
illustrate the method.

Suppose we have a ‘‘message’” in the form of a four-bit binary string: that is, the
message is in the form abcd where each of a, b, ¢, d is 0 or 1. The Hamming matrix
for a message of this type is the 4 x 8 matrix H:

00001 1 1 1
oo 1100 11
H=19 10101 01
11111111

The structure of the matrix is as follows: For a message containing 4 bits, we

need 2’ = 8 columns and 4 rows. The binary numerals for 0 through 7, (written in
3-digit form as 000, 001, 010, .. .) are used, in order, as the first three entries in
each column; the bottom entry is always 1. A Hamming matrix for a 5-bit message
would need 2* = 16 columns and 5 rows in order to represent the binary numer-
als for 0 through 15 (0000, 0001, ..., 1111) followed by 1 in the columns.

If the message we wish to send is abcd, we need to use four additional parity bits,
P1. P2, p3. and py, and form a message row vector M = [p, p psa ps b ¢ d]. The

0
parity bits must be assigned so that the product H - M" = 8 in mod 2 arithmetic.
0
0
a. Find the conditions that p,, p,, ps;, and p, must satisfy so that H - M" = 8 in
mod 2 arithmetic. 0
[p1]
D2
00001111 [p; pit+b+c+d 0
H.MT:()OII()()ll_a:p3+a+c+a’ _ @
01010101 |ps pta+b+d 10y
kAt b ab 3k gkl b prtptpsta+tptb+tctd 0
c
_dJ
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Solution:

PROBLEM 2.

So the conditionsarep, + b + ¢ +d =0;p;+a +¢ +d = 0;
ppta+b+d=0p+ptpsta+p,+b+c+d=0.

b. Find the message row vector if the actual messageis 0 1 1 0.

We havea = 0,b =1,c = 1,d = 0. Substituting these values in the preceding

equations in part (a) and solving in mod 2 gives ps = 0, p; = 1,p, = 1, p; = 0.
The message row vectoristhen M = {0 1 1 0 0 1 1 0].

c. The matrix H - M"is a column vector called the syndrome vector S. In the set-
ting we are using, S will have four components. When a message is received, the
syndrome vector is formed. If none of the bits of M was in error, the components
of S will all be 0. If we find that s, = 1, we know that an error has occurred in
transmission, and the binary number s, 5,55 gives the number of the component of
M which is wrong, where the components are numbered from the left, beginning
with 0. If s, = 0 and one or more of s,, s,, sy is 1, then two bits of M are incorrect,
but we do not know which two—the error is detectable but uncorrectable. If
there are more than two errors, it is possible that they will be *“‘corrected’ incor-
rectly or not get detected.

Suppose the message [0 0 1 1 1 0 0 0] is received. Compute S and, if appropri-
ate, correct the message.

1
2y

0

0
00001111] |1 1
0011001 1] [1]_]o0
01010101] |1 |1
11111111 o] |1

0

0

=

Since s; = 1, there is an error; ;5,53 = 101,,,.> = 5, so the error is in position #5
(recall that the first position is #0) and the corrected messageis [0 0 1 1 1 1 0 0].

In the last chapter we developed transformations from a spacecraft coordinate
system to a reference system with the same origin when the spacecraft has per-
formed a roll or a pitch or a yaw rotation. Matrix algebra is the natural tool to use
to find the transformation in cases where the spacecraft performs a series of such
rotations. This is developed in the next problem.

Recall that in Problem 1 of Chapter 7, we showed that

XrR = X . xp=xcosP — zsin P Xy =xcosY +ysinY
yr = ycos R + zsin R Yp =Y yy =ycosY —xsinY
zr = zCcOsR — ysinR zp=2zcos P + xsin P Zy =z

where the uppercase R, P, Y are the angles of roll, pitch, and yaw respectively, the
coordinates (x,y,z) are those of the reference system, and the subscripted coordi-
nates are those of the spacecraft coordinate system after performance of the rota-
tion designated by the subscript.

124



Chapter Eight

Solution:

Solution:

e X
a. Express these transformations in matrix form [y“} =M - {y} where the sub-
z}C 74

<

script sc designates the spacecraft coordinate system, by finding Mg, My, My, the
matrices of roll, pitch, and yaw, respectively.

Expressing each set of transformations above in matrix form,

1 0 0 cos’P 0 —sin P cosY sinY 0
Mg = |0 coSR sinR| M, = 0 1 0 My=|-sinY cosY 0
0 —sinR cosR sin P 0 cos P 0 0 1

b. If the spacecraft and reference systems are initially concurrent and the space-
craft performs in sequence a roll through angle R, a pitch through angle P, and a
yaw through angle Y, then the transformation from reference system coordinates
to spacecraft coordinates will be given by

Xse
y\c = M .

Find Mif R = 30°, P = 45°, Y = 60°.

} where M = IW\' s Mp : MR.

[

P 1
| 0 0 1 0 0
=
Mg =10 cos 30° sin 30°| = |0 \/23 %
0  —sin 30° cos 30° 0 2
L 2 2]
By |
e el | V2 V2
cos 45° 0 —sin 45 = 0 5
M, = 0 1 0 =l 0 1 0
sin 45° 0 cos 45° _2 , _V_§
2 2
1 V3]
cos 60° sin 60° 0 - -
. V3
My =) —sin 60° cos60° 0)=)—— % 0
1
0 0 0 0 1
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1 V3, V2, V2 L0 0
2 2 2 2 /3
3 1
M= M M Moy — —? % 0 0 1 0 0=
V2 N2 1 V3
B e
[ 1 v3 ] [vZ2 vz VG
2 2 2 4 4
e o M3 1
2 2 Vi 5 &
2 2 6
IRORRGRRN
[ V2 v2.3 V6, V3]
4 8 4 8 4
_|_ M6 Ve, V3 3V2 1
4 8 4 8 4
vz V2 Vo
) 4 TR
[ 035 093 013
=1-0.61 0.13 0.78
0.71 -0.35 0.61

c. The matrix M can be used to find the orientation of the spacecraft coordinate
axes with respect to those of the reference system in terms of direction cosines.

1
X=M- {0} is a column matrix whose elements are the direction cosines of the

0
spacecraft x-axis with respect to the x-, y-, and z-axes of the reference system.
0 ) 0
Similarly, Y = M - (1| and Z = M - | 0| produce column matrices whose ele-
0 1

ments are the direction cosines of the spacecraft y- and z-axes, respectively, with
respect to the reference system. For the motion of part (b), find X, Y, and Z, and,
from these, the angles made by each of the spacecraft coordinate system axes
with those of the reference system.

1 0.35 cos 70°
X=M-[0|=|-0.61|=cos (—52°
0 0.71 cos 45°

The angles between the spacecraft x-axis and the x-, y-, and z-axes of the refer-
ence system are about 70°, —52°, and 45°, respectively.

0 0.93 cos 22°
Y=M-|1|=| 0.13| = [cos 83°
0 —-0.35 cos (=70°)
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PROBLEM 3.

The angles between the spacecraft y-axis and the x-, y-, and z-axes of the refer-
ence system are about 22°, 83°, and —70°, respectively.

0 0.13 cos 83°
Z=M-|0|=10.78| = | cos 39°
1 0.61 cos 52°

The angles between the spacecraft z-axis and the x-, y-, and z-axes of the refer-
ence system are about 83°, 39°, and 52°, respectively.

Analyzing the light emitted from sources in space is a very important part of the
astronomer’s or space scientist’s task. Some of these sources, such as the stars,

are too far away for their shapes to be discernible; but others are close enough for
the emitting volume to be made out—that is, light can be seen to come from
separate parts of the volume—and such sources are said to be ““spatially resolved.”
Among such sources are the solar atmosphere, glowing at temperatures ranging
from 2500°C to well above a million degrees Celsius, depending on the particular
location, and comet tails fluorescing under the Sun’s radiation.

If such a source is transparent to its own radiation—that is, light emitted at any
point within it can escape from the source volume without being scattered or
reabsorbed—then an observer looking at a particular area of the surface of the
source will see the sum of all the light emitted behind that area, in the “‘line of
sight.”” The actual distribution of emitting intensity within the source, which in
practice is always an unknown function of position, is not directly available to an
outside observer.

However, when the source geometry is of an especially regular or simple shape,
such as spherical or cylindrical, mathematical methods are available to “invert”
the observed intensity data, thereby “‘reconstructing’ the source.

In the next problem, we illustrate the basic idea with a very simple but concrete
example in two dimensions.

Consider a small checkerboard, three squares on a side, on which a few lighted
candles have been placed in some squares at random, as shown in Fig. 8.1. If one
looks down any row, the combined light of all the candles in that row will be seen;
this combined light is simply the arithmetic sum of the separate candles in the

row. Referring to the figure, if we look along row 1, the light of three candles will
be seen; whereas, looking along row 3, we see the light of two candles. In similar
fashion, one can look along a column or even along a diagonal.

it | 9

Fig. 8.1
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Solution:

To a “‘two-dimensional’ observer in the plane of the checkerboard, this is, in fact,
the only direct information available—the actual distribution of the candles on
the checkerboard is unknown. This observer can, however, designate the number
of candles in square (ij) as an unknown variable x;; and proceed to set up a

system of equations for these nine unknowns:

Row equations Column equations
X1 X e =13 X1+ Xy o Xa = 2
Xo1+ X2+ x3=3 Xi2+ X0+ x3=3
X31+X32‘+‘X33:2 X13+XQ3+X33=3

Since we need nine equations to solve for nine unknowns, we may look along three
of the diagonals to get

X1+ X3 = 3
X1+ X + X33 = 1
X+ xp3=3

In this simple case, it is not difficult to solve the system by elimination; however,
it is easy to see that a more general method is usually necessary.

a. Write a matrix equation for this system of linear equations.

1
J
1
J
1
J

L1 1 0 0 0 O 0 08 3
0 0011100 0f/fxn 3
000 0O0O0 1T 1 1] x5 2
1 001 0010 0f]xy 2
01 0 0 1 0 0 1 O Xoo |5 3
00100100 1|/|xs| [3
0001 0O0O0 1 0] |xy 3
1 0001000 1]]xsp 1
01000100 0]|xs| [3]

b. Use elementary row operations to find the source distribution for a case that
produces the following matrix equation:

|
1
|
1
|

11 1.0 00 00 0] |xy 2
00011100 0]||xp| |3
00 0O0O0OO0T1T11 X3 1
1 001 00 1 0 0f|xy 2
01 001O0O0T1O0] X2 It = il
001 00 1T 0 0 1] /xx3 3
0001 000 1 0f]xsy 1
1 000 100 01 X3 2
01000100 0]|]|xy]| |3
L S | ]
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Solution:

x =1; X2 = 1; xi3 = 0; X1 = 15
Xn = 0; X3 =2; xn = 0; x3 = 0;
X33, — 1

Although it is certainly possible to solve part (b) manually, it is no doubt obvious
that a computer solution is more desirable even in this vastly simplified context.
Any of the commercially available programs to solve such matrix equations could
be employed to produce the solution to part (b) or to discover that the solution
to part (a) is not unique.

In practice, the physical radiating sources encountered are more complex in
several ways: (a) they are continuous distributions rather than discrete ones, as

in the example just treated; (b) they are three-dimensional sources; (¢) they do not
have simple geometric shapes; and (d) distant (astronomical) sources cannot
usually be observed from a sufficient number of directions to obtain a complete set
of emission data. What this means is that each observation must be modeled as

an integral rather than a simple sum and the integrals are generally complicated
expressions that are difficult to ““invert.” However, such inversions can be car-
ried out for certain types of local radiating sources.

One recent example of this same technique in the medical field is Computer-Aided
Tomography, or CAT scanning, in which X-ray radiation through a section of the
human body is used to mathematically reconstruct a three-dimensional image of
the section. For example, one kind of scanner measures the X-ray intensity that
penetrates the portion of the body being imaged (such as the brain or the abdom-
inal cavity). This scanner records the received radiation at 160 different positions
in each scan direction; the entire unit is rotated one degree at a time around the
head or abdomen, in a complete semicircle, to obtain 180 x 160, or 28 800,
“sums.”” The computer then processes this information to produce a “‘picture’ of a
cross section of the organ by reconstructing the X-ray absorption in each square
(or “‘pixel””) of a 160 X 160 grid. The complexities enumerated in the foregoing
paragraph also apply in this context, requiring the use of additional sophisticated
mathematical techniques. However, the basic idea of the checkerboard model
underlies this useful application.
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The Apollo 11 lunar module photographed
from the command and service module dur-
ing rendezvous in lunar orbit with Earth rising
above the lunar horizon.
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he conic sections play a fundamental role in space science. As shown in the

Appendix, any body under the influence of an inverse square law force (i.e.,

where force is inversely proportional to the square of distance) must have a
trajectory that is one of the conic sections. In celestial mechanics the forces are
gravitational; however, it is also of interest that the forces of attraction or
repulsion between electrically charged particles obey an inverse square law, and
such particles also have paths that are conic sections.

Telescopes with mirrors that are conic sections are also important in space tech-
nology because of their reflective properties. We shall close this chapter by con-
sidering the design of an X-ray telescope that requires two reflections in sequence
from surfaces whose cross sections are conics.

In the analysis of orbits, where a celestial body, such as a planet, comet, meteor,
star, or artificial satellite moves under gravitational attraction to a primary celes-
tial body, the center of mass of the primary body is at one focus of the conic
section along which the satellite moves. Because the simplest nontrivial conic sec-
tion is the circle, we shall begin with a consideration of circular orbits. (The word
“nontrivial” is included because a conic section could be a point or a pair of
intersecting straight lines, if the sectioning plane passes through the cone’s ver-
tex.) Most of us understand from experience Newton’s first law of motion, which
states that an object in motion continues in a straight line unless it is acted on by
some force. If we wish to make an object move in a circular path rather than in a
straight line, we must give it a constant push toward the center. Thus a central,

or centripetal, force is required. For example, when we tie a string to an object and
whirl it in a circle, the pull of the string is the force that keeps the object in the

circular path. If we represent the centripetal force by F}, then F;, = Trl- , where m

is the mass of the object, v is its speed or velocity, and r is the radius of
the circle.

When a spacecraft is moving in a circular orbit about any primary body, the force
toward the center is supplied by the force of gravity F,. According to Newton’s

: oy GMm . ; :
law of universal gravitation, F, = —— . In this equation, G is the constant of
2

universal gravitation, assumed to be constant throughout the universe; M and m
are the masses of any two bodies; and r is the distance between their centers of
gravity. The physical situation, if the forces F; and F, are equal, is represented
in Fig. 9.1.

The arrow toward the center represents the force of gravity, the dashed arrow
represents the tangential velocity of the spacecraft, and the curved arrow indi-
cates the circular path. (In rigorous use, velocity is a vector quantity, because it has
both magnitude and direction, whereas speed, having magnitude only, is a scalar
quantity. We will be using the symbol v for speed, the magnitude of the velocity
vector.) Thus the force of gravity holds the body in the circular orbit.

If we set F, = F,, we obtain Lan = G%m . Solving for v gives us
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PROBLEM 1.

Solution:

PROBLEM 2.

Solution:

This simple equation enables us to find circular orbital velocities about any pri-
mary body, if M is the mass of the body and r is the radius of the orbit measured
from the center of mass of the body. Because the value of GM is constant for any
primary body, it is convenient to substitute its numerical value rather than to
compute the value of the product for each individual problem. If the primary body
is Earth, then GM = 3.99 x 10" m*/s®. Thus for bodies in circular orbits

around Earth,
~/3.99 x 10"
VEarth — r m/S

where, of course, the distance r is expressed in meters.

Most manned spacecraft in Earth orbit have been placed at altitudes of about
160 km or more because atmospheric drag at altitudes below this causes a rather
rapid deterioration of the orbit. Find the velocity needed for a body to stay in
Earth orbit at an altitude of 160 km.

Using the given equation,

o \/ 3.9 x 104
st (6380 + 160) x 10°

2 —36594:) m/s

=10

Il

7.81 X 10 m/s, or 2.81 x 10* km/h.

The formula for circular orbital velocity is quite general and can be applied to
circular orbits about any primary body. G is a universal constant. We need only
to change the value of M when we are concerned with another primary of different

mass.

a. The mass of the Moon is approximately 0.012 times the mass M of Earth.
Write a formula for finding circular orbital velocities about the Moon.

Multiplying the numerator in the previous equation by 0.012,

B \ﬁ.mz X 3.99 x 10"
= m/s

r

4.8 x 107
= —r—_ m/s.

VMoon
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b. During the Apollo flights the parking orbit for the command and service mod-
ule about the Moon had an altitude of 110 km. The radius of the Moon is about
1740 km. Find the velocity in this orbit.

Solution:

VMoon

\/ 4.8 x 102 /s
(1740 + 110) x 10°

10°V2.6 m/s = 1600 m/s,

or 5800 km/h.

PROBLEM 3. A synchronous Earth satellite is one that is placed in a west-to-east orbit over the
equator at such an altitude that its period of revolution about Earth is 24 hours,
the time for one rotation of Earth on its axis. Thus the orbital motion of the
satellite is synchronized with Earth’s rotation, and the satellite appears, from
Earth, to remain stationary over a point on Earth’s surface below. Such commu-
nication satellites as Syncom, Early Bird, Intelsat, and ATS are in synchronous
orbits. Find the altitude and the velocity for a synchronous Earth satellite.

Solution: ~ The velocity can be found from the equation for circular orbital velocity. It can also

be found by dividing the distance around the orbit by the time required; that is,
2mr

V== Because the two velocities are equal,

(2 ) r=cm
t
o GMt*
4

. \B/GMIZ
4

It is apparent that ¢ = 24 hours = 86 400 seconds. Substituting the other values
yields

3.99 x 10" x (86 400)*
:\/ (86400Y _1yv/754

4% (3.14)
=422x10'm, or 42200 km
Altitude = 42 200 — 6400 km = 35 800 km

v:2X3~142;< 42200 _ 4 10 % 10* km/hr
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PROBLEM 4.

Solution:

Fig. 9.3

To understand orbits, we must know something of the nature and properties of the
conic sections. They get their name, of course, from the fact that they can be
formed by cutting or sectioning a complete right circular cone (of two nappes) with
a plane. Any plane perpendicular to the axis of the cone cuts a section that is a
circle. Incline the plane a bit, and the section formed is an ellipse. Tilt the plane
still more until it is parallel to a ruling of the cone and the section is a parabola.
Continue tilting until the plane is parallel to the axis and cuts both nappes, and the
section is a hyperbola, a curve with two branches. It is apparent that closed

orbits are circles or ellipses. Open or escape orbits are parabolas or hyperbolas

(see Fig. 9.2).

Another way of classifying the conic sections is by means of their eccentricity.
Let F be a fixed point (focus) and d a fixed line (directrix). For nonzero values of
eccentricity e, a conic section may be defined as the locus of points such that the
ratio of the distance PF to the distance from P to d is the constant e. The use of
polar coordinates permits a unified treatment of the conic sections, and it is the
polar coordinate equations of these curves that are used in celestial mechanics.

Use the eccentricity definition above to show that the equation of a conic section in

. e
polar coordinates can be stated as r = . . .
1—ecos 6

between F and d, and the polar axis is perpendicular to, and pointing away from d,
with the pole at F as shown in Fig. 9.3.

where p is the distance

If Q is the foot of the perpendicular from P to d, and P has coordinates (r, 6), then,
by definition,

I

e:.LF_:____
PQl p +rcoséf

r=-ep +ercos 6
r—ercos  =ep

r(l1—ecosB)=ep
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Fig. 9.4 shows a family of conics, each of which has directrix d and focus F,, for
different values of e. If a Cartesian coordinate system has origin F, and x-axis
along the polar axis, the Cartesian equations of these conics have this form:

G

Ilipse: 5
ellipse = 3

parabola: yi=q(x —h)

2

(x —’h)'+y_j: 1
a- b~

hyperbola:

Fig. 9.4

PROBLEM 5. Show that the polar equation of Problem 4 can be transformed into the Cartesian
equation of an ellipse if 0 < e < 1; a parabolaife = 1; and a hyperbolaife > 1.
Express the parameters 4, a, b, or g, as appropriate, in terms of e and p.

ion: = P
Solution: G

1. —er cosifdstep

Ife = 1,thenr = ercos § + ep becomesr = rcos 6 + p. Since

rcos =x and r =\/x3+y3,\fxz+y3:x + p.
Squaring,

X2+y2:X2+2xp+p:

y =2p (x it %)

o
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SO
h = —%andq = 2p.
Ife # 1, then r = ercos 6 + ep becomes

\/x’—+7 —lexiren
x>+ y? =%’ + 2¢°px + e’p°
x}(1 — e?) — 2e?px + y* = e?*p>.
Dividing by (1 — e?) and completing the square, we get the following:

(x— i >2+ L i
1 — ¢? 1—¢e®> (1-—e??

-5
— e‘) + 9

(2s) =2

= 1—e

2

If0 < e < 1, the denominator of the y* term is positive, and we have an ellipse
pe e, __ @
—c I~ AR

If e > 1, the denominator of the y? term is negative, so we may rewrite the
equation as

with h =

__pe )
(x 1 —eé? y:

2 - 2 2 15
ey 22
e’ — 1 =l
and we have a hyperbola with
pe’ _ep ep
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PROBLEM 6.

Solution:

PROBLEM 7.

Solution:

Recall that for an ellipse a* — b* = ¢* and for a hyperbola a® + b? = ¢2, where, in
both cases, c is the distance between the center of the conic and a focus and a is

the length of the semimajor axis. Show that the results of the preceding problem
are consistent with this and that in both cases e = ¢ /a.

For the ellipse,

2 Q=r) 7. S ;
e’p? elp? e*p?
ct=la’—b?= P ~ — [an P

@@= 1=¢ (@

__¢p _
C=q= - ¢
For the hyperbola,
; . . ezpz ezpz e“‘pz
e =g bt = 2 2 + 2 = 5) 2
- €17 e -1 (2-1)
c = ,eﬁp = ea
@ =i

We see that for an ellipse, 2 - ¢ is the distance between the foci. Since e = ¢/a, if
¢ = 0we have e = 0; but if ¢ = 0, the two foci coincide with the center and we
have a circle rather than an ellipse. A circle can therefore be considered the conic
section with eccentricity 0.

It is shown in the Appendix that the total energy E of a two-body gravitational
system and the eccentricity e of the orbit of the less massive body (mass m) with
respect to the more massive body (mass M) are related by

GMm (e’ — 1)
I8 S
2ep
Since it is virtually impossible in the real world for the total energy to have a
value that would resultine = 0 or e = 1 exactly, orbits that are exactly circles or
exactly parabolas do not occur in nature. However, such orbits are of interest as
limiting cases of actual trajectories. The energy equation of the Appendix,

lmv,_GMm:E:GMm(r—l)

2 r 2ep -

provides the means to determine the velocity of an orbiting body at any point in its
orbit.

Solve the energy equation for v, and then express the velocity at any point in an orbit
in terms of G, M, r and a, if needed (where a is defined as in problem 5), for each
type of orbit.

1 >, GMm  GMm(e*—1)
Smyi= +
2 r 2ep
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For an ellipse,

For a circle, r = constant = a

S o AR G
r (e /6

(Recall that this was shown at the beginning of this chapter in the preliminary
discussion of circular orbits.)

= o ()= 2.
1=l,sothat
a

Vh = \(GM <%+%>

The minimum escape velocity of a rocket-borne space probe is the parabolic

velocity v, = V2GM /r . Velocities greater than this produce a hyperbolic orbit,
and lesser velocities produce an elliptical orbit (or no orbit if too small).

For a parabola, e =1, and

For a hyperbola,

ep

Elliptical orbits are frequently analyzed in terms of orbit parameters, such as
apogee and perigee distances. These distances are indicated in Fig. 9.5 by the let-
ters A and P respectively. Before we discuss elliptical orbits, it will be necessary
for us to avoid ambiguity by clarifying our terminology and mathematical notation.
Most of us know from our reading of space events that in NASA news reports the
point in an orbit nearest the surface of Earth is called the perigee, whereas the
farthest point from the surface is called the apogee. These points are indicated by
C and D, respectively, in Fig. 9.5. In common usage the word is used to refer to
either the position of the point or the distance to the point.

o
i

- C —

)

Fig. 9.5
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PROBLEM 8.

Solution:

Solution:

PROBLEM 9.

Solution:

However, usage is not uniform; some references state that the distances are
measured, not from the surface of Earth, but from the center. In this article, we
shall use distances measured from the center. The distances from the center to
the perigee and the apogee will be indicated by P and A, respectively. In most
discussions, the context will make this clear. If in any situation confusion could
result, then distances from the surface, if used, will be called perigee altitude or
apogee altitude, whereas distances from the center will be called perigee radius or

apogee radius. Incidentally, the mathematics is simpler when distances are mea-
sured from the center.

a. Express the distances A and P in terms of the semimajor axis @ and the eccen-
tricity e of an ellipse.

From Fig. 9.5,

I
Il

A=a+tc=a+tea=a(l+e)

I

aF=C

Il

a—ea=a(l—-e).
b. Express the eccentricity of an elliptical orbit in terms of A and P.
The following relationships are apparent from Fig. 9.5:

a=44 + P),

c=a-P=3A4+P)-P=4iA-P),

and
p-C_1(4-P)
a 3(A+P)
,_A-P
A+ P

This formula is a quick and easy way of finding the eccentricity of an elliptical
orbit. As a check, we note by inspection that e = 0 when A = P, which is the
condition for a circular orbit.

Derive formulas for v,4 and vp, the velocities at apogee and perigee, in terms of A or
P, respectively, and e of the elliptical trajectory.

From Problem 7, the velocity of a body in an elliptical orbit at a distance » from the

focus is
v=\mM(%—l)
rooa

Ifr = A =a(l + e), wecansubstitute 1/a = (1 + ¢)/A and r = A to get

o B 1) By
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PROBLEM 10.

Solution:

PROBLEM 11.

Solution:

Ifr = P =a (1 — e), by asimilar substitution,

= \ow B 15%) - o

These equations can be written in other ways as well, because numerous ways of
expressing relationships among e, ¢, a, A, and P are possible. The particular form
for the formulas reflects personal preference.

Show that the velocities at apogee and perigee are inversely proportional to the
distances from the center.

If we divide the equation for v, by the equation for vy (see Problem 9), we obtain
E:\[(l—e)P :\/2(1—e)P
Vp (1+e)A a(l +e)A

Eep
z

yeiabr e

Thus the velocity at perigee is inversely proportional to P, and so on. That is, when
the orbital distance from the center of the primary body is small, the velocity at
that point is large; when the distance is large, the orbital velocity is small. This
result agrees with Kepler’s second law of planetary motion, which states that a
planet moves about the Sun in such a way that the radius vector from Sun to planet

sweeps out equal areas in equal times.

Derive a formula for the period of an elliptical orbit, given that the period of an
elliptical orbit with semimajor axis a is the same as that for a circle with radius

r = a.

Following the method used in Problem 3, we express the velocity in terms of the
distance around the orbit and the time p required to make one transit of the orbit

= 2ur
p
Also
- /M
r
Then
2ar _  |GM
p r
(2mr)? _GM
p’ r
) _ ur)'r
GM

145



Chapter Nine

PROBLEM 12.

Solution:

Solution:

Solution:

146

3
—h i
p=2m CM -

Because the period is the same when r = a, we may write

a3

p=2’n’ EM

An Earth satellite is placed in an elliptical orbit with perigee altitude of 160 km and
apogee altitude of 16 000 km. Use 6380 km for the radius of Earth.

a. Ifinjection is at perigee, what must be the injection velocity?
We first find the eccentricity as follows:

P = 6380 + 160 = 6540 km or
A =6380+ 16 000 =22 380 km or

6.54 x 10° m
2.24 x 10" m
By Problem 8,

_ 22380 — 6540 _ 15840 _
22380 + 6540 28920

0555

By Problem 9,

_[3.99 x 10" e
vp= \/—6_54 107 (1-55) = 10'V0.9456

=9.72x10°m/s, or  3.50x 10°km/h.
b. Find the speed at apogee.

By Problem 9,

3.99 x 10"
- G = 5) = 7
Ka \/2.24 x 107 (L=10:55) V1.78 x 107 x 0.45

=10°V8.02m/s=2.83%x10°m/s, or  1.02 x 10* km/h.

c. Find the period in this orbit.

From Problem 8,

o 22380 + 6540

> = 14460 km, or

1.446 x 10’ m,
and, from Problem 11,

(1.446 x 107)°

P=2"\ 390 x 10" °
= (2m) (10°) V7.48 s

— 7.2 % 102 s or 457 hY
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PROBLEM 13.

Solution:

PROBLEM 14.

Solution:

PROBLEM 15.

During the Apollo flights, the Apollo spacecraft and the third stage (SIVB) of the
Saturn V launch vehicle were placed in a parking orbit 190 km above Earth. Find

the velocity and period in this orbit.

Because r = 6380 + 190 = 6570 km, or 6.57 X 10° m, we find from Problem 7,
14
B \/%959;—%: 10V0.6073 m/s=7.79x 10° m/s, or  2.8x 10°km/h.

From Problem 11,

(6.57 x 10°)°

e s

p =2m

During the flight of Apollo 11, the SIVB stage was reignited and burned long enough
to place the Apollo spacecraft on a trajectory to the Moon. At the end of the
burn, the spacecraft had a velocity of about 3.90 X 10* km per hour at an altitude of

336 km. Was the Apollo spacecraft given escape velocity?
Using the results of Problem 7, the escape velocity equals
2GM \[ 2(3.99 x 10"
v, = = sm/s
r (6380 + 336) x 10°

=10*V1.18 m/s = 1.09 X 10* m/s, or 3.92 x 10* km/h.

Thus the velocity imparted was about 200 km per hour less than escape velocity,
thereby assuring a free return trajectory. That is, if the major propulsion systems
failed, the spacecraft would be going slowly enough to be pulled around and ori-
ented back toward Earth by lunar gravity, the attitude-control system being ade-
quate to make needed course corrections.

A spacecraft, as illustrated in Fig. 9.6, is in a circular orbit 800 km above Earth. The
spacecraft must be transferred to a lower circular orbit 160 km above Earth.
Compute the velocity changes needed at A and P to achieve this transfer.

Fig. 9.6
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Solution:

We first find the eccentricity of the transfer orbit, which is, of course, an ellipse,
with A = 7180 km and P = 6540 km.

_ 7180 — 6540 _ 640
7180 + 6540 13720

=0.047.

We then compare the velocities at A in the circular orbit and the elliptical orbit
to find what changes must be made. Since GM has units m’/s’, we express A and P
in meters. From Problem 7,

14
hei= V%m/s: 7.45 x 10° m/s, or  2.68x10*km/h,

and from Problem 9,

_ B99xi10t _ . o
vA~\/77.18X106(1 0.047)=7.28x10°m/s, or  2.62x 10*km/h.

Therefore a propulsion engine on board the spacecraft must be fired long
enough so that a retrothrust (opposite to the direction of motion) will slow down
the spacecraft by 600 km per hour. The spacecraft will then leave the 800-km
circular orbit and follow the elliptical transfer orbit, remaining in it indefinitely
unless additional changes in velocity are made.

When the spacecraft reaches the point P, however, we want it to move from the
elliptical orbit into the 160 km circular orbit. Therefore we must use the results of
Problems 7 and 9 to investigate velocity changes at P.

14
vc:\/%%m/SZT&XIOJm/S. or  2.81x10°km/h

3.99 x 10
= 2 e e ATy = 7 90 (R m s . \ |
Yp \/6.54x Tor (L047)=7.99x 10 m/s,  or  2.88x10'km/h

That is, a retrothrust must reduce velocity again, this time by about 700 km/h.

This method of transferring a spacecraft from one orbit to another is known as a
Hohmann transfer, named after Walter Hohmann, city engineer of Essen, Ger-
many, who published the method in 1925. There are many paths that could be used
to move the spacecraft from the 800 km to the 160 km orbit. But the Hohmann-
transfer ellipse, requiring only two short burns, is the most economical, taking the
minimum amount of energy. Therefore this method is called a minimum-energy
transfer. It has many applications.
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PROBLEM 16.

Solution:

A satellite is placed into a synchronous orbit by a technique involving a Hohmann-
transfer ellipse. We computed in Problem 3 that the altitude of such a satellite is
about 35 800 km and its orbital speed is about 9370 km per hour. Fig. 9.7 suggests
the details.

A ¥

N

Fig. 9.7

We shall assume that injection is at the perigee point, which we shall place
160 km above Earth. Then obviously

P = 6380 + 160 = 6540 km, and
A = 6380 + 35800 = 42180 km.
We wish to find the velocity change needed at A.

42180 — 6540 _ 35640 _
¢ = 15180 7 6540 _ 4g720 0732

14
- % (1.732) = 1.028 x 10*m/s,
or3.7 x 10*km/h

. [3.99 x 10% B \
Va = \/:22 g (1~ 0.732) = 1.59 x 10°m/s,
or 5.73 x 10° km/h.

o

But the tangential velocity needed at point A is 9370 km per hour. Therefore the
velocity of the satellite must be increased in the direction of Earth’s rotation by
9370 — 5730 = 3640 km per hour. This extra push or kick would be provided by
the firing of a motor on board the satellite, and the thrust and firing time must be
such as to give the desired increment in velocity. Such a motor to be fired at
apogee is called an apogee motor, and the thrust it provides is called an

apogee kick.

The relative efficiency of using this method is easy to understand. Placing a heavy
final stage of the launch vehicle at the synchronous altitude and then having a
burn to give the entire assembly circular orbital velocity would take much fuel.
Instead we send up to the synchronous altitude only a relatively light satellite

and a small apogee motor. The numerical values used in this problem are merely
illustrative. If the perigee altitude is higher or lower than the one we have
assumed, all the other numbers are changed.
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PROBLEM 17.

Solution:

Solution:

PROBLEM 18.

Solution:

One more maneuver is needed to make the satellite synchronous. It now has a
period equal to the time of Earth’s rotation. However, the satellite will appear to
be stationary over a given point only if it is in equatorial orbit. Unless corrections
were made during launch, the plane of the orbit will be inclined to the plane of
the equator. One method of solving this problem is to fire a motor at the precise
instant when the satellite crosses the equator, adjusting the burn time and direc-
tion of thrust so that the vector sum of the burn velocity and the orbital velocity
make the angle of inclination equal to zero.

The first step in lunar orbit injection in the Apollo 11 flight was to place the
spacecraft in an elliptical orbit of 110 by 313 km, the low point—or perilune
(corresponding to perigee for Earth)—being on the back side of the Moon.

a. Compute the velocity needed at perilune to inject the Apollo spacecraft into
this orbit.

Using the data developed for lunar orbits in Problem 2,

P

1740 + 110 = 1850 km

A = 1740 + 314 = 2054 km

o _ 2054 — 1850 _ 204
2054 + 1850 ~ 3904

= 0.052

12
v, = \/f—'% (1.052) = 10°V/2.73 = 1.65 x 10°m/s,

or 5.95 x 10° km/h.

b. Find the period in this orbit.

Evidentlya = % (2054 + 1850) km, or 1.95 x 10°m

and

[(1.95 x 10%? 5 :
P =2xw (—m%S =2m(1.24) X 10°s = 782 s, 0or 130 m

The lunar module descent orbit insertion during the Apollo 11 mission began with a
Hohmann transfer. The command and service (CSM) and lunar modules were in

a circular orbit 110 km above the Moon. The lunar module was detached and its
descent engine was fired to reduce velocity so that it would enter a 110-by-15-km
lunar orbit. Find the reduction in velocity needed to achieve this orbit. The CSM
remained in the 110 km parking orbit.

In this case, the change to the elliptical transfer orbit was made at apolune (corre-
sponding to apogee for Earth).

A =1740 + 110 = 1850 km or 1.85 X 10°m

P

1750 + 15 = 1755 km or 1.755 X 10°m
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_ 1850 — 1755 _ 95 _
1850 + 1755 3605 O

_ 4.8 x 10" e _ .
VA = \[1.85 < 10° (1 — 0.026) = 10°V2.526 = 1.59 X 10° m/s,
or 5700 km/h.

110 km

15 km

ZI/;anding
Fig. 9.8

We found in Problem 2 that the circular velocity in the 110-km orbit was 5800 km
per hour. Thus the reduction in the velocity needed, achieved by a retroburn of
the lunar module descent engine, was 100 km per hour. At perilune altitude of
15 km, several retroburns and attitude changes were made—both automatically,
and manually by the pilot—causing the spacecraft to descend to the surface. If for
any reason the descent from the 15-km perilune could not be made, the lunar
module could have remained indefinitely in the elliptical transfer orbit until a
rendezvous and docking with the CSM could be made. Thus this maneuver,
which seemed so tricky and dangerous as we watched before our television sets,
was actually a routine Hohmann transfer. The tricky maneuver, requiring some
manual control, came when the powered descent to the lunar surface was made

from the 15-km altitude.

We will conclude our discussion of orbits by considering the classic analysis
known as Kepler’s Problem, which in modern times makes use of high-speed com-
puters to produce final results. It is the task of determining the exact position of

a body in an elliptical orbit at any given time. Kepler, of course, was interested in
establishing the nature of the planetary orbits around the Sun, but today the

same analysis is used to predict the location of artificial satellites in their orbits
around Earth.

We shall make use of a number of the relationships involving elliptical orbits
already established. For the orbit illustrated in Figure 9.9,

ep Ca(l=¢)
T 1-—ecosf 1 —ecosf

FP=p
CP=CA =a
CF = ae,
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where F is one focus of the ellipse and the location of the primary body in the
gravitational system; A, P, C are apogee, perigee, and center of the ellipse,
respectively; and e is the eccentricity of the ellipse.

Kepler’s Problem is stated in terms of the angle v (called the true anomaly of the

_ellipsay detween the Earth-perigee ray (FP) and the radius vector (FS), rather

than the angle 6, as shown in Fig. 9.9. Since v is the supplement of 6, the ellipse
equation may be written in terms of v as

L af(l=¢)
= etoss

Recall also that the rate at which the radius vector traces out the ellipse is not
constant, but is in accordance with Kepler’s first law: The radius vector sweeps out
equal areas in equal time. This makes the task of expressing r and v directly in
terms of time extremely difficult. Kepler circumvented the problem by considering
the projection of the ellipse on an ““auxiliary circle’” having the same center and
passing through P and A as shown in Fig. 9.10. If a satellite is at S on the ellipse
and Q is the foot of the perpendicular from S to AP, then S’ is the intersection of
QS with the circle. Kepler defined three new quantities: the foreshortening factor
k = SQ/S’Q; the eccentric anomaly £ = £S'CP; and the mean anomaly M,

which is a fictitious angle through which an object would move at a uniform angu-
lar speed with respect to F. That is, M = (At/T) - 2w radians, where T is the time
for one complete orbit and Az is the time of interest. He then established the
following relationships:

(1) k=V1-e?
(2) r=a(l —ecoskE)
(3) tan < = L etang

2 1 —e 2
(4) M=FE —esinE

These will be derived in Problem 20.

Fig. 9.9 Fig. 9.10
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PROBLEM 19.

ORIGINAL PAGE IS
OF POOR QUALITY

In order to determine a satellite’s position at any time, we must be able to compute
r and » Since in general, e and 7 (and therefore M) are known for an orbit, if
equation (4) can be solved for E, then (2) and (3) will provide r and ». But equa-
tion (4) is transcendental in E, so that no analytical solution is possible. This
difficulty has been the core of many computational schemes generated by astrono-

mers, mathematicians, and physicists.

High-speed computers now make a numerical, iterative solution both possible
and feasible. The iterations would proceed as follows:

E]:()

E7:M+€SinEx

E;=M + esin E,

l;k+1 = M + esin l;k

The iteration continues as long as necessary to compute E to a desired accuracy
(say 107 or 107'°); in other words, when [E, . ; — E| < 107", we can use

E = E, . ., if this is our desired level of accuracy. Since Ex . — Ex =
e (sin Ey — sin E, _,), it can be shown that [Ey . | — Ey| = e* ~'M, so that the
sequence E, converges to the new value of E, since e < 1. This process is highly
efficient for small values of e, and after a few iterations, it is usually found that

the difference is within tolerance.

a. Write a computer progream to perform the iteration outlined above, and then to
use the value of E so found to compute r and v, where E is found to an accuracy

of 10712

ILIST 190 ' 1F ARSI (EZ2 — El) < 1080 =
12) THEN 220
10 REM ORBIT POSITION PROGRAM 200 EL = EZ
20 REM © = ECCENTRICITY OF ORBI 210 NEXT J .
i 215 PRINT "DESIRED ACCURACY NOT
30 REM A = SEMIMAJODR AXIS DF DR OBTAINED AFTER": PRINT "20 I
BIT TERATIONS"
40 REM P = PERIGD OF ORBIT 220 PRINT J3" ITERATIONS WERE ‘RE
B0 REM T = TUME DF POSITION DET QUIRED TO": PRINT "ACHIEVE D
ERMINATION ESIRED ACCURACY."
100 PRINT "WHAT IS THE ECCENTRIC 225 . PRINT & PRINT
1T OF THE "ORBIIORY s TNPUT: O ZR30EN= BT
110 PRINT "WHAT IS THE SEMIMAJOR 240 R=3A » (1. — Q@ % COS (E))
AXDS LENGTH s PRINT. & TN 246 RY- = “ReR =L RY
KILOMETERS?": INPUT A 250, W=t ‘SOR (01 wQ) 1SS0
120 PRINT "WHAT IS THE PERIOD OF TAN (E / 2)
THE ORBIT s M2 PRINT " IN HO 260 NU = 2 * ATN (W)
URG? 2 INPUT P 265 NUZ = 100 * (NU + 0.005):NU =
130 PRINT "HOW MANY HOURS AFTER NUZ / 100
PEREGEE I§! JHE 270 PRINT " THE SATELLITE Is *3R
140 PRINT "POSITION TO BE DETERM i" KM": PRINT " DISTANT FROM
INED®Z! = INPUT T EARTH " ;
I50AM = 2% S4B oeiTE P 280 PRINT " AND ITS ANOMALY IS
160 E1l = 0 "iNU3" RADIANS."
1170 (LEBRE s VT TOE20 290 END
180 B2 =M + § » BIN (El)
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PROBLEM 20.

Solution:
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b. Use this program to find the position of the satellite discussed in Problem 12
one hour after it passes the perigee point in its orbit.

We had e = 0.55, a = %(A )= %(22 380 + 6540) km = 1.45 x 10* km, and

T' = 4.77 h. Running the program of part (a) with these values produces the
following results:

IRUN
WHAT IS THE ECCENTRICITY OF THE ORBIT?
70489
WHAT IS THE SEMIMAJOR AXIS LENGTH.
IN KILODMETERS?
714500
WHAT IS THE PERIOD OF THE ORBIT.
IN HOURS?
?4.77
HOW MANY HOURS AFTER PERIGEE IS5 THE
POSITION TO BE DETERMINED?
21
12 ITERATIONS WERE REQUIRED TO
ACHIEVE DESIRED ACCURACY.

THE 'SATELLITE 15 18670 KM
DISTANT FROM EARTH,
AND ITS ANOMALY IS 2.37 RADIANS,

The four relationships of Kepler’s Problem can be established using the geometry
and trigonometry of Fig. 9.10.

a. Show thatk = V1 — 2

k was defined as k = SQ/S’Q. From Fig. 9.10, we have

SQ = rsin »,
and
$'0 = V(S'C)? - (CQY = Va® — (CF — QFF
= Va® - (ae + rcos v)?.
Then

i = rsin v | r*(1 = cos’y)
Va® — (ae + rcos v)’ a’ — (ae + rcos v)’’

a(l—e?

Substituting r =
& 1 +ecosv

k=V1-e.

and simplifying produces, after some labor, the result

b. If a rectangular coordinate system is placed on Fig. 9.10 with origin at F and
positive x-axis along the polar axis, express the rectangular coordinates of S in
terms of £, a, and e. Then use the fact that S can also be given by (—r cos v, r sin v)
to show thatr = a (1 — ecos E).
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Solution:

Solution:

Since CF = ae and S'C = a, the x-coordinate of SisQF = CF — CQ = ae — acosE.

The y-coordinate is
SQ=kS'Q
=V1-—e’(asinE).

So the coordinates of S are (ae — a cos E, V1 = e?asin E).

2

Now  r?=r2cos’v + r’sin’v = (—rcosv)? + (rsin v)?

(@ge —acos EY +(V1— e asinE)

=g’ —2a’ecos E + a*cos’ B F a“sin’lE —a‘e’sin E

!

a’e?> — 2a2ecos E + a* — a’e?(1 — cos’E)

Il

= a?— 2a*ecos E + a*e’cos’E

a*(1 —2ecos E + e?cos*E)

a’(1 — ecos E)~

So =a(l —ecoskE).

tan-q= /1 — cos 6
2 1 + cos @

¢. Use (b) and the identity

to show that

tan - = 1-iketang
2 =g 2

Sincer =a(l —ecos E)and —rcosv =a (e — cos E),

o5 = cos E — e
1 —ecosE’
Then
i — i :l—ecosE—cosE+e:(1+e)(1—cosE)
e 1 —ecosE 1 —ecosE
and
o :1—ecosE+cosE—e:(1“6)(1+COSE)
L 1 —ecos E 1 —ecos E ’
Then

tan_g:\/l—COSV \/1+e\/1—cosE 1+etan
2 1 + cosv 1 —e 1+ cos E t=e

E

>
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Solution:

d. As the satellite moves in its orbit so that the radius vector sweeps out equal
areas of the ellipse in equal times, FS" sweeps out equal areas of the auxiliary

circle in equal times. If the area enclosed by FP, FS’, and the arc S'P is swept out in
time At, and 7'is the time for the satellite to traverse the entire ellipse, then this
area is given by At /T (ma*®). Recall that M is (A¢/T) (2w), and use the geometry of
Fig. 9.10 to show that M = E — esin E.

Area FPS’ = area of sector CSP’ — area of CFS’

At 5 1 5. 1 ;
T T4 =54 E 2(ae)(asm E)
ZwéTEZE —esin B

M=FE —esinE

Among the first telescopes used to explore the heavens were those based on the
reflective properties of paraboloidal mirrors. It is the fact that all light striking
such a mirror in the direction parallel to the axis of the paraboloid is reflected to
the focus that provides the light-gathering capacity of the telescope. The reflec-
tive properties of ellipsoidal and hyperboloidal surfaces are also important. In
both cases, light striking the surface in a direction toward or away from one focus
is reflected in a direction either away from or toward the other focus. These prop-
erties are illustrated in Fig. 9.11.

(e)
ellipse hyperbola

Fig. 9.11
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PROBLEM 21.

Solution:

The technique of ray tracing is used in the design of optical instruments. One class of
such instruments owes its focusing properties to the law of reflection. This law
states that the angle between the incident ray and the reflecting surface must equal
the angle between the emergent ray and the reflecting surface. In ray tracing,
equations are written for the lines containing incident and emergent rays of elec-
tromagnetic radiation. Use this technique to prove the reflective property of the
parabola, given that the slope of the tangent at the point (xo, y,) on the parabola

y? = 4px is 2p /y,. (The slope of the tangent at any point on a conic section graph
will be derived in Chapter 10.)

We must show that an incident ray parallel to the axis is reflected through the focus.
The geometry of the reflection is shown in Fig. 9.12; since the lines TI and PF

are parallel, and since the angle of incidence equals the angle of reflection, we
have that triangle FTP is isosceles and so ¢ = 26. The equation of the line con-
taining the incident ray is y = y,. The equation of the line containing the reflected

rayis (y — yo) = tan ¢ (x — x) = tan 260 (x — xo).

—
(==]

Fig. 9.12
Since
¢ 2
tan20 = —21209 andtang =L,
1 - tan"O y“
4 4 2 4
tan26:—£/(1__£7>:_ﬂﬂo_m
Yo Vo yi&— 4p?
But
,V(% = 4[)X“
SO
4pyo
tan 26 =
dpx, — 4[)'
__ Yo
=D
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PROBLEM 22.

Substituting the slope into the equation of the line,

Yo

3 ‘y\':x(]_p(x — Xp)
il mE g

y:}n( ()) £
Xo — P

If x = p,y = 0, so this line passes through the focus.

Special instruments have been designed to study the electromagnetic radiation of
stars and other astronomical sources in wavelengths outside the visible region. If
X-rays are to be reflected, the incoming rays must form a very small angle (grazing
angle) with respect to the reflecting surface; otherwise the X-rays are simply
absorbed. However, with grazing angle incidence, incoming rays that are not par-
allel to the axis are not focused at all (making it impossible to form an image of a
source that is not a point) unless an even number of reflections is used. The X-ray
telescope on the High Energy Astronomy Observatory (HEAO) satellite was
therefore designed to use two reflections from conic section surfaces. Fig. 9.13
shows some of the possibilities that were considered. Notice that in each, the
focus of the paraboloid coincides with one focus of the other conic.

reflecting surfaces - hypcrboloid—\/,

s -
- =

N :
“ paraboloid pre
B o
/// 7
-
.
4§ -

N
N
\

N\,

reflecting N
- surfaces 2 e

paraboloid

cllipsoid-—.v:

Fig. 9.13 c.

In designing an X-ray telescope that uses hyperboloidal and paraboloidal reflecting
surfaces, the most effective placement of the x- and y-axes is such that the x-axis
coincides with the axis of the paraboloid and the y-axis passes through the inter-
section of the two surfaces. This is illustrated in Fig. 9.14 in cross section. (Note

that figures 9.14 thru 9.17 are distorted: grazing angles are much smaller than shown
in these diagrams.)
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Sclution:

Fig. 9.14
incident
paraxial
radiation
y
/
Vi
/
I
|
\
FPi——C¢——1t——Cc——

a. If p is the distance between the vertex and focus of the parabola in Fig. 9.14; ¢,
the distance between the center of the hyperbola and each of its foci; A, the
distance between the center of the hyperbola and each of its vertices; and k, the
distance between the center of the hyperbola and the origin, find the equations
of the two conic sections in this coordinate system.

For the parabola, the vertexis at (—(p + ¢ + k), 0) and the focus-vertex distance is
p, so the equation is

p:=dpi(x +p +tectk)

For the hyperbola, the center is at (—k, 0); the role of the parameter a in the
standard equation is taken by 4 and that of the parameter b by V ¢’ — h*, so the

equation is

Eky ¥
h? ¢ — h?

b. Fig. 9.15 shows the ray paths, which form angles « and B with respect to the
x-axis, and the tangents to the parabola and hyperbola, which form angles 6 and ¢
respectively, with respect to the x-axis. Experience in this field has shown that
when successive reflections take place, surface reflection efficiency is maximum
when an incoming ray parallel to the axis strikes each reflecting surface at about
the same angle. Show that this condition, together with the fact that the angle of
incidence equals the angle of reflection, means that g = 20, d = 36, a = 46.

hyperbola —
//
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Solution:

We number the angles 1, 2, 3, 4, 5in Fig. 9.15, as shown in Fig. 9.16.

hyperbola
P

o B b1 a
‘ FooF—
Fig. 9.16
We see that

21 = /2and £3 = £5 (£ of incidence = £ of reflection);
£3 = L4 (vertical angles);
£1 = 6 (incoming ray is parallel to axis);

£2 = /3 (for maximum reflection efficiency).
So

L2 =/3=/L4=/5=0.

I

Z1

Now, since an exterior angle of a triangle is equal to the sum of the nonadjacent
interior angles,

B = 20;
¢ =B+ 6=236;
a=d¢ + 6 = 46.

c. In designing the surface of the X-ray telescope, the designer must be able to
express the parameters p, c, k, and & of part (a) in terms of two initial design
parameters F and y, of the instrument, where F is the distance along the x-axis
between the origin and the focus of the hyperbola, and y is the distance along
the y-axis between the origin and the point of intersection to the parabola and
hyperbola. (These are shown in Fig. 9.15.)

Recall that under grazing-angle incidence, 6 is a very small angle (this is defi-
nitely not shown in the figure; the angle occurs where these lines finally intersect).
It is also true in this situation that p is small compared to F. Show that the
parameters p, ¢, k, and h can be given, at least approximately, in terms of F and y,
by the following

c =

_3 _X
- k=gt P =3gF

0o =

2RP=cP+ kP +dp(ptc+k)-V(E+kP+4p(p +c + k)P — dc?k?
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Solution:

Let (x;, y;) be the point on the hyperbola where the second reflection takes place, and
let (0, y,) be the y-intercept of the line containing the ray after the second reflec-
tion. (See Figure 9.17.) Then tan @ = y,/F and tan B8 = y,/(c + k) = y,/(2c + F),
since F =k — c¢. Because 6 is such a small angle, « and S are also small. This

suggests the following approximations:

Y2=Yo=y;;tan a = a; tan 3 = .

0,y,)

Y hyperbola
//

Fig. 9.17

(Fig. 9.17 does not show this because the angles are not small enough. The reader is
encouraged to imagine how the figure would change if angles 6, 3, ¢, and « shrink.)

Since a =28, we get

and if y, = yy, then
2F =2c¢ + F, or F = 2c.

So

The parabola has equation y* = 4p (x + p + ¢ + k). Since y = y,whenx = 0, and
since ¢ + k = 2F,

yoo =4p (p + 2F) = 4p* + 8Fp.
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If p is small compared to F, the term in p” may be neglected giving p = y,*/(8F);
h can be expressed exactly in terms of p, ¢, and k by observing that (0, y,) is on
both the parabola and the hyperbola. This means that

y=14p(p +c +k)

and

k_: Yoo o o_ 1

h* > — h? ’
Then

W= =) (5= 1) = ap p + e+ k)
SO
Tk = R+ k) + R =dp (p + c + k),

or

W= hilcs F kA ap(p He T k) etk =0,

Using the quadratic formula,

32— 4+ ki+4p(p+ct k)= V(E+kI+4p(p +c + k)P — 42k}
= ~ .

The positive sign before the radical is discarded, since it produces a physically
unrealistic value of A larger than ¢, so

2hP=c’+ k> +4p(p +c+ k)= V(E+ K +4p(p +c + k) — 42k,

This analysis produces an initial set of parameters p, ¢, k, and h. A ray-tracing
computer program, based on the principles discussed in Problem 21. is then used
to check the actual focusing capabilities of a hypothetical instrument with these
specifications. The use of the computer with such a program makes it possible to
refine the values of the parameters for best focus under desired conditions. Actual
preparation of the reflecting surface is also controlled by computer-driven
machinery once the optimal values of the parameters are established.
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Photograph of an active volcanic eruption on
Jupiter's satellite lo taken on March 4, 1979,
by Voyager 1.
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PROBLEM 1.

Ithough calculus is used extensively in space science and technology, we shall
consider in this chapter just a few problems, most of which extend or

amplify ideas discussed in previous chapters. Calculus is also used in the
Appendix.

Until recently it was accepted that there were three possible states in which matter
could exist: solid, liquid, and gas. Under conditions that normally prevail on
Earth, these are the only states in which matter is found. However, it is now known
that if the temperature is very high or the density is very low, a fourth state of
matter can exist; it is called plasma. A plasma consists of electrons and positively
charged ions rather than neutral atoms, and so it has both electric and magnetic
fields. (Anion is an atom that has lost one or more of its electrons.) On Earth,

plasmas exist, at least temporarily, in lightning, electrical sparks, fluorescent
lamps, and in the ionosphere.

In addition to the electromagnetic radiation we sense as heat and light, it is now
known that the Sun emits particle radiation having a wide range of energies. The
particles (or plasma) appear to come from specific regions on the Sun, some as
highly energetic particles which move radially outward into interplanetary space.
Some of these highly energetic particles that reach Earth’s ionosphere produce
auroral displays (the northern lights) and affect shortwave radio transmission by
modifying the ionospheric structure.

A lower energy component of the particles is emitted from the Sun on a continuous
basis, and these lower energy particles also move away from the Sun in a straight
line (radially). The study of this interplanetary plasma, which has been called the
solar wind, is of great concern to astronomers and other scientists for several
reasons. One is that the Sun is the only star we are close to, and the emission of
plasma means that it is very gradually losing matter, an important factor in stellar
evolution. Another is that the plasma state of matter is difficult to study on Earth
because it is hard to reproduce in the laboratory the conditions of high tempera-
ture and low density that exist naturally in the solar atmosphere and in interplane-
tary space.

A number of space probes and satellites have been used to investigate the prop-
erties of the interplanetary plasma. The Interplanetary Monitoring Platform (IMP)
series of probes from 1963 to the present, the Orbiting Geophysical Observatory
(OGO) series from 1964 to 1974, the International Sun-Earth Explorer (ISEE)
satellites from 1977 to the present, and the Mariner, Pioneer, and Voyager deep-
space probes have all carried experiments resulting in a series of measurements of
flow direction, density. velocity, and electric and magnetic fields of the

solar wind.

It has been postulated, on theoretical grounds, that the magnetic field lines of the
solar wind coincide with the locus of particles emitted from the Sun, and the
experimental findings to date seem to support this hypothesis.

a. Determine the shape of this locus, given that the solar atmosphere from which
emission takes place rotates at a constant angular velocity and that particles
move outward with constant velocity in the radial direction. Assume the direction
of rotation is clockwise.




Calculus

Solution:

An intuitive solution using ‘‘time lapse” polar graphing is displayed in Fig. 10.1, and
this shows that the locus is an Archimedean spiral. This can be verified analyti-
cally using calculus. We are seeking r = f(6) such that dr/dr = V (particles emitted
with constant radial velocity), and d6/dr = C (emissive origin is rotating with
constant angular velocity). From the chain rule,

dr _ dr do

dt do dr’
and substituting from above, we have

_ dr dr
V=% a6

Il

ol<

a constant we may call &.

Integrating and choosing the coordinate system so that f(0) = 0, we have r = k#,
which is the equation of an Archimedean spiral.
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b. It has been observed that the equatorial region of the solar atmosphere rotates
atarate of C = 2.94 x 10"° radians per second with respect to the distant stars.

This is known as the sidereal rotation rate and is equivalent to a sidereal rotation
period of

2w
——————-85=2.14 X 10°s = 24.7 days.
204 x 10°° 2.14 0"s = 24.7 days
Spacecraft measurements of the solar wind velocity show time variations, with
velocity peaks at approximately 25-day intervals as well. For example, Mariner 2
measured velocities varying from 400 km/s to about 750 km/s at some peaks.

Determine k and plot the graphs of the Archimedean spirals for velocities of
400 km/s and 750 km/s.

Solution: For V = 400 km/s,
_Vv _ 400 _ 3
k = C =294 x 10 1.4 X 10° km/rad.

For V = 750 km/s,

750

k=i x10°

= 2.6 x 10* km/rad.

The graphs of r = k6 are shown in Fig. 10.2. (Note that it is the practice to use
km/rad as the unit for &, but this is equivalent to km, since the radian is
dimensionless.)

(a): V=400 (b): V=750

km/sec km/sec

Fig. 10.2

In Chapters 4 and 7, we considered some of the corrections needed to produce
undistorted pictures of spacecraft observations. Here is another such correction.
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PROBLEM 2.

Most satellite photography makes use of scanning techniques. This is illustrated in
Fig. 10.3(a), where the scanning is done in the direction orthogonal to the flight
path. In performing the scan, a system of mirrors and lenses rotates around an axis
parallel to the flight path. Although the scanning system rotates at a constant

rate, we can see from Fig. 10.3(b) that the rate at which the scanning beam moves
along the ground depends on the angle it makes with the vertical.

T |

T

=

i i TF
T
9, AO, = AB;
: AX, # Ax,
_— Scan Mirror h
(]
1
Multispectral
Scanner
(MSS)
X, Ax, AX,
—_—
X2
(b)

(a)

Fig. 10.3

If we imagine that a square on the ground has the pattern shown in Fig. 10.4(a),
the result of this variable Earth-scan rate will be the distorted pattern shown in
Fig. 10.4(b). In order to produce an undistorted picture, the actual recording of
the images must be done at the Earth-scan rate rather than the rotation rate.
This panoramic distortion correction requires the ability to express the scan rate
along the ground, dx /dr in terms of the satellite height, 4, the angle 6, and the
rotation rate, d@/ds, of the scanning system, where 6, h, and x are as defined in

Fig. 10.3(b). Find such an expression.

Flag poles 60° 30° 0°
b ° 9 <— Flag poles
e N
7] /
4
(a) (b)

Fig. 10.4
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Solution:  (This is a straightforward related rate problem.) From Fig. 10.3(b), we see that
%

tan 6 = 50 SO that x = h tan 6. Differentiating with respect to time,
dx »,d6
— = hsec’6—-.
e

PROBLEM 3. In Problem 9a of Chapter 4, we estimated the surface area of an antenna “‘dish’’ by
treating it as though it were a flat circle. In actual practice, such an antenna is a

paraboloidal ““cap’ whose depth is from 10 percent to 20 percent of its radius. Let
us see how good this estimate was.

a. Find an expression for the surface area of a paraboloidal cap that is bounded
by a circle of radius r and has depth a.

Solution: ~ We can consider the paraboloidal cap to be generated by revolving the illustrated
portion of the parabolic curve (Fig. 10.5) around the x-axis. We must first deter-

mine the function y = f(x) for this curve. Then the surface area will be given
by the integral

s = 2| fOVI+ [FOF dx

Since this curve is a parabola with axis horizontal, opening to the left, and

with vertex at (a,0), its equation has the formy = bVa — x, where b must be
determined so that (0,r) satisfies the equation. This means 7 = bVa — 0, or

b = r/Va. The function we need, then, is f(x) = (r/Va)Va —x =rV1-x/a.

Fig. 10.5

Then

a X rl
= _ = ——
S ZTTJ; r\/l a\/l 4a3—4axdx

=21TJHL Vr? + 4a* — 4ax dx
(
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Solution:

Solution:

PROBLEM 4.

Solution:

This integral may be evaluated by the substitution u = r? + 4a* — 4ax to produce

/i ____‘I_T_r_[z 3/2]'3”‘12
Gy 4’ 3" |-

r2 + 4a2

S=2 f -
m 2 8a“

mr
2

- [(rz T 4a2)3/2 _ r}]

b. Recall that the paraboloidal cap had a radius of 10 meters. If its depth was 1 m,
find its surface area (assuming exact numbers) and then find the relative error of

the estimate made in Chapter 4.

Forr = 10manda = 1 m,

s =128 [(104)2 — 10 = 317 .

The estimate, approximating the paraboloidal cap as a circle, was
S = mwr? = 100w = 314 m”.

317 — 314

— G p
317 0.0098, or about 1 percent.

1650 =

c. Find the relative error for a depth of 2 m.

_ 10w 32 _ 103 = 2
S = S5 1(116) = 10'] = 326 m
error = |326 ~ 314/ m? = 12 m*
_
re. =35> 3.8 percent

In Problem 11 of Chapter 7, we observed that a spacecraft at a distance h from Earth
can observe only a portion of Earth’s surface.

a. Derive a formula for finding the fraction of the observable area as a function
of height above Earth’s surface.

The portion of Earth’s surface visible from the spacecraft is shown shaded in

Fig. 10.6. Let A, be the area of the zone with altitude BE. If we setup a
rectangular coordinate system with origin at A, and if the coordinates of a point on
the arc EC are (g(y), y). then this surface area is found by evaluating the integral

1 )| dy

YE
A, = ZﬂJ gV [g'(y
VB

where g(y) = x = \/?T)T and yg and y; are the y-coordinates, respectively,
of the points B and E.
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D
h
E
R B 3
l 3
A

Fig. 10.6

To determine the y-coordinate of B, ys, we observe that triangles ABC and ACD
are similar, so that

AB _ AC
AC AD
or
Y5 _ R
R R +h’
giving
yB = R®
PR+ h
We have
Ye = R,
and
)
,(y) = ?’
R ey
so the integral is
R 2
| Al=2wJR: VREEE B
| R- = y-
R+ h
I R
= 211’[,—‘,: Rdy

R+h

_ __R> | _2uR%
_ZﬂR[R R+h] R + h

If we let A. represent the area of Earth’s surface, then A, = 47wR?, so that

A, _ 2uR*h  _ h
A, 4nR R +h) 2R+ h)
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Solution:

Solution:

Solution:

Solution:

b. In April 1983, two members of the Space Shuttle Challenger crew, Story Mus-
grave and Donald Peterson, performed an extravehicular activity (an activity
outside the spacecraft) while Challenger was at an altitude of 280 km. What frac-
tion of Earth did they see? (Use 6380 km for the Earth’s radius.)

For & = 280 and R = 6380,

280

U ‘.
206380 + 280y _ 021 or2.1percen

_‘/L:
A.

¢. Discuss the manner in which the fraction A,/ A, varies with the altitude A.

Intuition suggests that as 4 increases, the value of A,/ A, should vary from zero to

1/2. On the surface of Earth, the fraction is zero. As h increases, so does the
fraction, and yet it must always be less than 1/2 ; that is, one cannot hope to view
more than a hemisphere at any one time. A little algebra bears this out.

A, h

A, 2(r +h)
is certainly zero when h = 0. Observe that

A, 1

~ TG

As h increases, the denominator of the right-hand side decreases, which forces
the entire fraction 4,/ A, to increase. Furthermore, as h — o, r /h — 0, and con-

sequently A,/ A, approaches 1/[2(1 + 0)] = 1/2.
d. At what altitude will an astronaut see one-fourth of Earth’s surface?

We must find A such that

1 h

4 2(6380 + &)
4-h=2(6380)+2-h
2-h=2(6380)
h = 6380 km.
e. The first astronauts to travel that far from Earth were the Apollo 8 crew
(Anders, Borman, and Lovell), who orbited the Moon on Christmas Day, 1968.
What percent of Earth’s surface could these astronauts see as they passed the

Moon, a distance of 3.76 x 10° km from Earth?

A, _ 3.76 X 10° _3.76 x 10°
A, 2(376 X 10° + 6.38 X 10°)  2(3.82 x 10°)

= 0.492, or 49.2 percent
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PROBLEM 5.

Solution:

Solution:

Solution:

PROBLEM 6.

The reflective properties of the conic sections were discussed in the final two prob-
lems of Chaper 9, where the formula for the slope of the tangent to a parabola

was used. Use differentiation to find such a formula for each of the following
conics at a point (x,, yo).

a. The parabola y? = 4px

Differentiation produces

d
2ya§=4p

dy _2p

dx  y -

b. The ellipse)% + b =

Differentiating this equation,

a*  b?dx
dy _ _b’x
dx a*y

The slope of the tangent at (x;, y,) is then

b’ xg

==
a Yo

2 2
5

¢c. The hyperbolai—; —

—b—zl

This is exactly the same as (b) with one sign change, so that the slope of the tangent
. b? Xq
at (xg, 1St
( 0 )’u) a’y,

Our final example in this chapter is a result of the spectacular discovery by the
Voyager space probes that one of Jupiter’s moons, lo, is the site of active volca-
noes, the first known instance of volcanoes other than those here on Earth. Images
returned by the spacecraft have provided measurements which scientists are

using to develop and evaluate models by which both the behavior and possible
causes of this volcanic activity may be understood.




Calculus

Solution:

The starting point is the familiar projectile problem with the valid condition (in
contrast to such problems applied to Earth) that air resistance is neglected, since
Io has no atmosphere. It is also convenient to begin the modeling process by
assuming that the gas and solid particles ejected from the volcano’s opening do not
affect each other’s motion upon ejection, that the opening is circular (roughly),
and that all particles start from the same point below the surface with the same
initial velocity at all possible escape angles in any direction. These assumptions
together have been called the ballistic model.

a. Photographs of the plumes of some of Io’s active volcanoes show that any verti-
cal cross section through the volcano vent’s center has the shape diagrammed in
Fig. 10.7, where we have placed the r-axis along Io’s surface and the z-axis per-
pendicular to the surface. If (r, z) is a representative point in such a cross sec-
tion, find an expression for the escape angle i (or a trigonometric function of 7)
which will cause an ejected particle to pass through this point (i is measured from
the z-axis). Let r, be the radius of the circular opening, v, the initial velocity of the
particle, and d the distance below the surface of the point where the

particle originates.

Zm —\

Zm

Fig. 10.7

If g is the value of lo’s gravity and # the time at which the particle is ejected, then our
model is given mathematically by the following conditions:

d? d ; =
dtz2 = —g; —-dil » =ypCOSt; Z ([(1) — d
dr o dr o =
- 0; dl,:[“ =yysini; r(t) =0

Routine integration and application of the initial conditions result in
1 ) . 1 2 .
(A) z(t) = — 580 + gtot + votcosi —d — igt“ — Voly COS I

(B) r(t) = (vosini) (t — t)
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Solution:

To get an expression for i, we eliminate ¢ by solving equation (B) for ¢ and substi-
tuting this expression into equation (A), which gives

5

(©) z = —>-cosec’i + rcoti — d.
2vg

Since equation (C) contains cosec’i and cot i, we may use the identity
cosec’i = 1 + cot’i to obtain an equation in cot i, namely,

2 2
r : g
g—zcotzz — reoti + &2
2V(] ZV(';'

+d+z=0.

Applying the quadratic formula,

EEET
\/r 4(21/(,2 208 A e

gri/vi 2

coti =r =

and simplifying,

(D) coti=;i (u \/1—<€—§>2~<i—§)(d+2))

We see that there are two possible ejection angles that will bring a particle through
a particular point, one on the way up and the other on the way down. This is
illustrated in Fig. 10.7, at the point marked (r, z).

b. If i is the largest possible escape angle for the vent, express the height z,, of the
lower boundary of the portion of the plume that contains both upward- and
downward-moving particles (identified in Fig. 10.7) as a function of r, and then
find r,, and r, of Fig. 10.7.

From equation (C), with i = i,

.
8r- ; :
Zm = —2—cosec%y + rcotiy — d;
2\’()‘

rm and r, are the values of r in this expression for which z,, = 0. Setting z,, = 0 and
multiplying by

_
2v¢ sin’,
&

produces the equation

¥

. 2v¢sin i cos iy N 2v¢ d sin’i,
2 — r

= 0.
8 8

Using the positive sign in the quadratic formula to get the larger r,

2
Vo .. . 2 _ 28d
Tm = o= SINLGIEEOS | + COSly = 1 :
g V

0
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Solution:

Solution:

and using the negative sign to get the smaller value,

5
- Mot ; % 2gd
rp = —SIn ;| COSy — COS7ly — >
8 Vi

c. Express the height zy of the upper boundary of the plume of Fig. 10.7 as a
function of r and find an expression for k,, the maximum height of the plume.

The upper boundary is the set of points for which the two solutions given by
equation (D) of part (a) coalesce; in other words, where the radical vanishes, or

L R (U5
Vo Vo

SO

The maximum height 4, occurs when r = 0:

2
Yo _

(E) hP = zg

d. Express the coordinates (r,, z;) of the point to the right of the z-axis, at which
the upper and lower boundaries meet, in terms of iy, v, g, and d.

Since this point is on the upper boundary, we have the radical of equation (D) equal
to 0. and since it is on the lower boundary, we have i = i,. From equation (D),

cot iy = 0 sor o tan g
0= oy i == lo.
8 8
From our solution to part (c),
2 2
z, = LA d
2% 2w

or

vé g (V(% . )2
2 28 2vi\g an i, d

— (1 == tanzi()) = d
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Solution:

e. Measurements of images obtained from the Voyager 1 imaging system have pro-

vided values for r,, r,, and h,. Use the foregoing results to obtain expressions so
that i, voz/g, and d may be calculated from these measurements.

From equation (E), d = (v$/2g) — h,. This will give d if we have v{/g, since hy is
known.

From part (b),

5

Voo o :
'm + rp =i—— SINilg COS Iy
g
or

=
E_rm+r2

g sin(2i,) g st e Ca)

This will give vi/g if we have iy, since rm and r, are known.
Also from part (b),

ZV()" e 5. ng

I'm = Ip= —— Sinigy/costiy — —.

g Vo

Since d = (vi/2g) — h,,

2vi .. : 2gh
Tm — 7y = — sin igy/cos?, — 1 + 22

2
Vi

0F oo c 2gh oo
= — Ghlihayie=x"= Gy
8 i)

2gh o
gzp — sin?,
il Vo
ity Cos i

: - : o 2 siniy cosi
Squaring to eliminate the radical and substituting = 0

Vi Fmtrp
2¢gh . '2 sin i, cos i, L.
_ 5 LZE = Slnzl() 2( —*) hp = Slnzlu
<rm rp)": Vo = rm+£p
250 2.
I'm t 1p cos’i cos’i
4h, . -
= = taniig— ‘tanZ,,
'm + 1,

which we can solve for tan i, using the quadratic formula:

tan i, =

4/’1p & 16}1; (rm — rp)z 2

2L 5 —
rm + rp (rm + rp)“ rn] + rp
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Solution:

Since i, appears on the images to be smaller than 45°, the minus sign is

chosen, giving
. 2h h 2 re— ra\2
aniy= 2o\ fa( e (=)
Tm + 1, Tt Pt 1o

f. Voyager I detected eight volcanic plumes, of which plume 1 and plume 3 were
closest in shape to our diagram in Fig. 10.7. Table 10.1 gives the observed mea-
surements of 7, r,, and h, for these plumes. For each, calculate i, vi/g, and d
from these data, then use the results of part d. to predict r, and z, for these plumes.

Table 10.1
Measurements of Io’s Plumes

Plume
No. Tm 7 h, (measured in km)

il 500 17.5 280
3 125 Yo 70

For plume 1,

(280 ) _ ( 280 )2 } (482.5)2 _
tan:y= 2(517.5 “517.5 5175 0233

~oip = 28.05°

2

% = (517.5) (cosec (56.1°) = 623 km

_ V6 g 623 e
=55 ~ =5 —280=32km

2
ry=— tan i = (623) (0.533) = 332km

2
7= %" (1 — tan%,) — d = 6—:?[1 - (0.533)2] — 32 =191 km.

For plume 3, the results are as follows:
tan i; = 0.4821, so iy = 25.74°

2
Vo

—g—= 169 km; d = 15 km; r, = 82km; z; = 50 km
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Solution:

g. For plume 3, it was also possible to measure r,. This measurement was 125 km.
Compute the relative error of our calculated value for r, as a percent.

Absolute error = |82 — 125| = 43.

Relative error = —f% = 0.34 = 34 percent.

This error is large enough to demand refinement of the model. The assumption
least likely to hold is that ejected gas and particles do not affect each other’s
motion; it is more probable that the combination of particle sizes and rate of gas
flow is such that the particles are carried by the gas into the central portion of the
top of the plume and released into ballistic trajectories only on descent.

Although we shall not consider these modifications here, the reader may be
interested in knowing that the results of further refinements of the model are
consistent with the theoretical proposal that Io’s volcanoes are due to tidal
effects in its surface generated primarily by another Jovian moon, Europa.
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on the basis of painstaking observations made by him and by his prede-

cessor, Tycho Brahe. It was Isaac Newton’s great achievement to establish
mathematically that the inverse square law force of gravitation must produce a
trajectory that is one of the conic sections. We present this analysis as an appendix
rather than in the calculus chapter (Chapter 10), since the manipulations needed

in the development include some complexities that may be unfamiliar to the
intended audience.

T he elliptical shape of planetary orbits was first asserted by Johannes Kepler

Before beginning the main problem, we need to establish some properties of first
and second derivatives of the vectors. The unit vectors i, j, u,, i, are shown in
Fig. A.1. We have

u,= i cosf + jsin6
and

Ug = I (—sin @) + J cos 6.
Differentiating with respect to time,

dr

i (—sin 6)%: + J (cos 9)% = 1, (% );

dr
du,

T —eaey 30 o o ndE - dE,
q — cos())dr+/( sm(f)d[ “’dt’

y? u
| (r,0)
| =
| ///
- ///
i o
S X 2
1
Fig. A.1

In polar coordinates, the position vector is (r «,), and so

. di— dp du, dr- de —
= — = — g = = + r 5
velocity = (ru,) Qo U, +1 T & U, +r r Ug;




acceleration = —(ru,) = dg (dr + ,_d_ea )

dr’ dr
drg drdu, drdf- d29— dedu,
o+ = T e TP
Cdr? dr dr dear? T et T Tarar
_dr— drd8 4’0 — <d0> —
it TG arr e~ " g ) ¢

(5 ()5 g
de? dt dr dt de2/

We now consider the statement of the law of gravitation: The force on the orbiting
body (mass m) is proportional to the product of the masses of the two bodies
involved and inversely proportional to the square of the distance between them.

In symbols,
d(ru ) _ _GMm

m B) r

dr?

where the minus sign expresses the fact that the force of gravitation acts in the
direction toward the mass M. Using the result above for acceleration, and cancel-

ing the m, we get

& (do drdo dle]— __GM.
[dH <dr” [2dtdt+rdtz 7

Since the u, term is missing on the right, we have

2&(1_0 Ty d°6

dr dt dZ:(J.

Kepler’s first law, that the radius vector sweeps out equal areas in equal times,

: 1 ,dé : . ;
can be stated mathematically as ST A, a constant. If we differentiate this

expression with respect to time, we get

or

1 [,drdé dze]:
2’ [ dde T Tap i

So we may let the constant A = rz%: , and this is equivalent to the fact that the iy

coefficient vanishes, or Kepler’s first law.

&r (de> _GM

Equating the u, terms, =
qianne G e a? "\ar 2
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Using the substitution B = GM, aswell as A = rz% , produces the differential

equation

d? A
(1) L- 55

We are seeking r as a function of 6; it turns out to be easier to find 1/r as a function
of 6. This can be done by letting w = 1/r, or equivalently, r = 1/w. Then

dr _ 1 dw _ 1 dw df
dr w? dt w? do dr
_adw o1 de o de_
= Ad0’51ncew3dt r ; A.

Differentiating again,

dzr__AQ<d_w>*_ d’w do
dr? dr \dg, de? dt
) 7d2W
= —A%2——
TR
We can now rewrite (1) as
% 7d2W 2 2D
—A'wl— — AW’ + B*w? =
Aw TE w’+ B'w= =0
or
d-—u’}) + w = Bﬂv
do- A
) . B B
which has a solution, w = Ccos (8 — 6,) + ER

But this means that

1 A%/B

_1 =
" "W " Ccos(6 — 6) + (B/AY) 1+ (CA/B)cos (0 — 6,)°

For A*/B =ep,C = —1/P, 6, = 0, we getr = ep/ (1 — e cos 6), the equation of
the conic section in Chapter 9, Problem 4.

We next derive the “‘vis-viva,” or energy integral, and show that the eccentricity of
a conic section trajectory is physically determined by the total energy of the
gravitational system. Again, it helps to first establish some properties of the vec-
tors involved. In this context, we will need the square of the velocity vector, v:




- = dv) _d,- - - dv ,dv - - d
2 — = — — —_— —_— — - —_—
v Vv, s0— 4 dt( v)=v t+dt v=2v T
so that

;.dv _1d .

T 2dt(v)

The gravitational equation may be written in the form

dv _  GMm -

m U,.
dt r? r

Premultiplying by v, using the dot product, produces

i GV
de r !
Substituting
v =2a + 505,
on the right,
dv _1d

on the left, and recalling that u, - u, = 1 while u, - u, = 0, we get

- [lg(VZ)] _ _GMmdr
2 dt r? de

411 = ommd (1)
dt[zm" GMmdt r/’

Integrating, we get the energy equation

() %m V= Q—A;I—m = E, a constant.

In physics, the first term on the left, (1/2) m v?, is the kinetic energy of the system;
Mm

G : . .
the second term, — , is the gravitational potential energy; E, the constant

of integration, is the total energy. We may evaluate E by considering a particular
point in the orbit. Since r = ep/ (1 — e cos ), r attains its minimum value for
0 = m:

_ _ep
fanin =
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But

1 =W
- max»
T'min
SO
_1l+e
Whax = ep .

Now from the vector expression for velocity,

o () ),

But when 6 = 7, the velocity is entirely in the u, direction, so for w =

vi= (r%’ ) and equation (2) becomes

%mAzwz—Bmw—E:O,

anx >

recalling that A = r"%? ,and B = GM. Now, using the quadratic formula with

the positive sign,

+ 2 2
Wmux:Bm \/(Bm)ﬂ+2mAE:£1(1+ 1o
mA~* A*

=

‘m

2A2E)

Equating the two expressions for wp., and recalling thatep = A?/B:

l_uzl_je:B’(H /1+2A;E)’
ep  A’/B A’ B’m

and therefore

3) 2AE .




Since m > 0, we see that the nature of the trajectory depends on the total energy
153

If E = 0, thene = 1 and the trajectory is a parabola;
if £ <0, then e < 1 and the trajectory is an ellipse;

if E > 0, then e > 1 and the trajectory is a hyperbola.

It is sometimes useful to solve (3) for E, giving

_B’m (e’ — 1)

E ;
2A°

_ GMm (e’ - 1)

- 2ep '
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Apogee

Attitude of a spacecraft

Celestial equator
Celestial sphere

Center of mass

Conjunction of planets

Cosmology
Declination

Direction cosines

Ecliptic

Electromagnetic spectrum

Ephemeris

Geocentric

Iteration

Jovian

Julian day

Orbital period

Perigee

Photon

".'_’l SRRt L

The most distant point from Earth reached by a body in an elliptical orbit with Earth
at the primary focus.

The orientation of the spacecraft in space, with respect to some chosen coordinate
system.

The projection of the equatorial plane of Earth on the celestial sphere.
An imaginary sphere of infinite radius on which celestial objects appear projected.

The point within a body at which all the mass could be located without changing its
dynamical behavior.

The position of the planets when they are on the same right ascension circle on the
celestial sphere (in other words, when they appear closest together in the sky).

The study of the evolution of the cosmos or universe.
The analog, on the celestial sphere, of latitude circles on Earth.

The cosines of the angles made by a vector in space with each of the three positive
coordinate axes.

The path described by the center of the Sun on the geocentric celestial sphere during
the course of a year.

Radiation of various wavelengths emitted in the form of waves carrying rapidly vary-
ing electric and magnetic fields (light is an example of a portion of the spectrum).

A list of the successive positions of a celestial object on the geocentric celestial
sphere for a series of equally spaced times.

Concentric with Earth.

A repetitive mathematical procedure, on an initially chosen trial value, which can
produce improved values of a desired quantity.

Relating to the planet Jupiter.

The number of days, and fraction of a day, measured from noon on 1 January of the
year 4713 B.C.

The time it takes for an object to complete one orbit.

The closest point to Earth reached by a body in an elliptical orbit with Earth at the
primary focus.

The smallest unit (or “particle”) of electromagnetic radiation, carrying one quantum
of energy. '
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Pitch

Right ascension

Right-handed three-
dimensional coordinate
system

Roll

Watt

Yaw
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An angular rotation of an aircraft or spacecraft around an axis through the wings
(which has the effect of moving the nose up or down).

The analog, on the celestial sphere, of the longitude circles on Earth.

A convention of three basis vectors most simply represented by the thumb, index,
and middle fingers of the right hand when extended at right angles to each other; the

x-axis is along the thumb, the y-axis along the index finger, and the z-axis along the
middle finger.

An angular rotation of an aircraft or spacecraft around an axis along its length (which
has the effect of tipping its wings).

A unit of power. (In the mks system of units, 1 watt = 1 joule per second.)

An angular rotation of an aircraft or spacecraft around an axis perpendicular to its
body (which has the effect of moving the nose from side to side).




